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Preface 
 

 

Reliability is defined as the capability that a product can perform a required function 

for a given period of time under specified operating conditions. How to measure 

reliability is a basic problem in reliability science.  

 

For a long time, researchers and engineers have used probability theory to measure 

reliability. The method of obtaining this metric, which we call probabilistic reliability, 

is based on the statistical inference of product failure time data. However, this metric 

has a lot of problems in the actual application scenarios, wherefore many researchers 

have tried to correct the probabilistic reliability metric. Till now, people have 

successively proposed reliability metrics based on Bayesian theory, interval analysis, 

evidence theory, fuzzy sets and possibility theory, but there are still various problems 

with these metrics.  

 

We believe that a normative and scientific reliability metric must satisfy four 

requirements, i.e., slow decrease, self-duality, multiscale analysis, and uncertain 

information fusion. Based on these four requirements, we propose a new metric called 

belief reliability based on probability theory, uncertainty theory and chance theory. 

This proceedings contains 15 papers published during the establishing process of belief 

reliability theory in the past 5 years. It shows theoretical and application research papers 

including reviews, theoretical framework, information fusion, design optimization etc. 

 

We sincerely welcome academic and engineering peers to criticize, discuss and use the 

belief reliability theory. 
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Belief reliability for uncertain random systems
Qingyuan Zhang, Rui Kang, Member, IEEE, and Meilin Wen

Abstract—Measuring system reliability by a reasonable metric
is a basic problem in reliability engineering. Since the real systems
are usually uncertain random systems which is affected by
both aleatory and epistemic uncertainties, the existed reliability
metrics may not work well. This paper aims to develop a general
reliability metric, called belief reliability metric, to cope with
the problem. In this paper, the belief reliability is defined as
the chance that a system state is within a feasible domain.
Mathematically, the metric can degenerate to either probability
theory-based reliability, which mainly copes with aleatory un-
certainty, or uncertainty theory-based reliability, which mainly
considers the effect of epistemic uncertainty. Based on the
proposed metric, some commonly used belief reliability indexes,
such as belief reliability distribution, mean time to failure and
belief reliable life, are introduced. We also develop some system
belief reliability formulas for different systems configurations.
To further illustrate the formulas, a real case study is finally
performed in this paper.

Index Terms—Belief reliability, Chance theory, Uncertain ran-
dom system, Reliability metric.

I. INTRODUCTION

RELIABILITY is one of the most important properties
of systems. It refers to the capability that a component

or system can perform a required function for a given period
of time under stated operating conditions [1]. In reliability
engineering, quantifying reliability by a quantitative metric is
a fundamental problem. Only on the basis of a reasonable
reliability metric can we better carry out reliability design,
reliability analysis and reliability assessments. The key prob-
lem for determining a reliability metric is how to cope with
uncertainties affecting products. In general, there are two
types of uncertainties: aleatory uncertainty caused by inherent
randomness of the physical world, and epistemic uncertainty
coming from our lack of knowledge about a system [2], [3].

Traditional reliability metrics are based on probability the-
ory. At the very beginning, the reliability of a product is
calculated using statistical methods to analyze the product’s
failure time data [4], [5]. Based on the law of large num-
bers, the acquisition of this reliability metric requires large
samples of failure time data. Since our knowledge about the
system is included in the data, reflected as the system-to-
system variations of failure times, there is no need to strictly
distinguish the two types of uncertainties. However, in the
product development process, it is often difficult to collect
enough statistical data of the system failure time. This promots
the physical model-based reliability metric, where the failure
of a system is regarded to be determined by physics-of-failure
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(PoF) models [6], [7]. Through PoF models, the reliability
of a system can be improved by eliminating weak points. In
this method, the parameters in the PoF models are usually
described as probability distributions, which reflects the effect
of aleatory uncertainty. The system reliability can be, then,
obtained by propagating the aleatory uncertainty through the
PoF models [8]. However, because of our limited information
of the products, the process of selecting or establishing a PoF
model is often influenced by epistemic uncertainty, and this is
especially true in the design of innovative products. Without
accounting for the effect of epistemic uncertainty, this metric
may overestimate the reliability of a system [9]. Therefore, to
better design and improve system reliability, people tend to
consider the two types of uncertainties separately.

Considering the effect of epistemic uncertainty, many reli-
ability metrics are proposed based on different mathematical
theories, such as evidence theory-based reliability metric [10],
[11], interval analysis-based reliability metric [12], [13], fuzzy
interval analysis-based reliability metric [14] and posbist reli-
ability metric [15]. Among the four reliability metrics, the first
three are all given as reliability intervals, and the last one is
defined as a possibility measure. As pointed out by Kang et al.
[16], the reliability interval-based metrics may cause interval
extension problems when calculating system reliability and
posbist reliability does not satisfy duality property which may
lead to counter-intuitive results.

For this reason, a new mathematical theory called uncertain-
ty theory is utilized to measure system reliability. Uncertainty
theory was founded by Liu [17] in 2007 and refined by
Liu [18] in 2010. By introducing the uncertain measure,
the uncertain variable, the uncertainty distribution and other
concepts, uncertainty theory is viewed as an appropriate math-
ematical system to model epistemic uncertainty [19], [16].
To simulate the evolution of uncertain phenomena over time,
researchers also proposed the tools of uncertain process [20]
and uncertain differential equation [21]. After these years of
development, uncertainty theory has been applied in various
areas, including uncertain finance [22], [23], decision making
[24], [25], uncertain control [26], maintenance optimization
[27], etc.

In 2010, Liu [28] first described system reliability as an
uncertain measure mathematically and proposed a reliability
index theorem to calculate the reliability of boolean systems.
Later in 2013, Zeng et al. [29] name this reliability metric
as belief reliability, and interpreted the metric as the belief
degree of the system to be reliable. They also clarified the
strong need for a new metric in reliability engineering, and
proposed a significant belief reliability analysis method for
applications. Since the theoretical basis of this reliability
metric is uncertainty theory [30], in this paper, we call this
metric uncertainty theory-based reliability for convenience.
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Because of the axioms of uncertainty theory, this metric satisfy
duality property and will not cause interval extension prob-
lems. The uncertainty theory-based reliability metric seems
to be more proper to measure system reliability considering
epistemic uncertainty. Nowadays, however, real engineering
systems are usually consist of different types of components.
Some components may suffer great epistemic uncertainty and
their reliabilities are modeled by uncertainty theory, while
others may be mainly affected by aleatory uncertainty and
their reliabilities are measured based on probability theory.
We call these kind of real systems, in this paper, as uncertain
random systems. Obviously, the reliability of an uncertain
random system cannot be analyzed based only on probability
theory or only on uncertainty theory.

To address this problem, a chance theory proposed by Liu
[31] in 2013 is introduced in this paper. Chance theory can be
regarded as a mixture of probability theory and uncertainty
theory, and can be utilized to describe systems with both
randomness and uncertainty. In chance theory, the uncertain
random variable and the chance distribution are two funda-
mental concepts. To describe uncertain random events over
time, uncertain random process was proposed [32], [33]. In
recent years, chance theory has developed steadily and applied
widely in many fields such as uncertain random risk analysis
[34], portfolio optimization [35] and project scheduling [36].

The reliability metric based on chance theory is first intro-
duced by Wen and Kang [37] to measure the reliability of
an uncertain random Boolean system. However, the metric
has the following shortcomings. First, it does not consider
the effect of time, which is a significant factor in reliability
engineering. Second, only the reliability of systems with two
states is defined, and the multi-state system reliability is not
given. Thirdly, they only discuss the system reliability math-
ematically, and some physical meanings are still insufficient.

To avoid the above shortcomings, in this paper, we aim
to expand the connotation of belief reliability and develop
a general definition of belief reliability metric. The general
metric, of course, can degenerate to both traditional probability
theory-based reliability metric and uncertainty theory-based
belief reliability metric. In addition, for the need of engineer-
ing applications, the new reliability metric can be estimated
by means of either failure time data, performance margin or
system function level. Some system belief reliability formulas
are also discussed in this paper.

The remainder of this paper are structured as follows.
Section II introduces some mathematical basis of uncertainty
theory and chance theory. In Section III, the belief reliability
metric is defined and discussed based on chance theory. Some
important belief reliability indexes in reliability engineering
are defined in Section IV. In Section V, formulas for system
belief reliability are given for simple and complex systems,
respectively. A real case study about the reliability analysis
of an apogee engine is performed to illustrate the formulas.
Finally, some conclusions are made in Section VI.

II. PRELIMINARY

In this section, some basic concepts and results of uncer-
tainty theory and chance theory are introduced.

A. Uncertainty theory

Uncertainty theory is a new branch of axiomatic mathemat-
ics built on four axioms, i.e., Normality, Duality, Subadditivity
and Product Axioms. Founded by Liu [17] in 2007 and refined
by Liu [18] in 2010, uncertainty theory has been widely
applied as a new tool for modeling subjective (especially
human) uncertainties. In uncertainty theory, belief degrees of
events are quantified by defining uncertain measures:

Definition II.1 (Uncertain measure [17]). Let Γ be a nonempty
set, and L be a σ-algebra over Γ. A set function M is called
an uncertain measure if it satisfies the following axioms,

Axiom 1 (Normality Axiom). M{Γ} = 1 for the universal
set Γ.

Axiom 2 (Duality Axiom). M{Λ}+M{Λc} = 1 for any event
Λ ∈ L.

Axiom 3 (Subadditivity Axiom). For every countable se-
quence of events Λ1,Λ2, · · · , we have

M

{ ∞∪
i=1

Λi

}
≤

∞∑
i=1

M {Λi} .

Uncertain measures of product events are calculated follow-
ing the product axiom [38]:

Axiom 4 (Product Axiom). Let (Γk,Lk,Mk) be uncertainty
spaces for k = 1, 2, · · · . The product uncertain measure M is
an uncertain measure satisfying

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk {Λk} ,

where Lk are σ-algebras over Γk, and Λk are arbitrarily
chosen events from Lk for k = 1, 2, · · · , respectively.

Definition II.2 (Uncertain variable [17]). An uncertain vari-
able is a function ξ from an uncertainty space (Γ,L,M) to
the set of real numbers such that {ξ ∈ B} is an event for any
Borel set B of real numbers.

Definition II.3 (Independence [38]). The uncertain variables
ξ1, ξ2, · · · , ξn are said to be independent if

M

{
n∩

i=1

(ξi ∈ Bi)

}
=

n∧
i=1

M{ξi ∈ Bi}

for any Borel sets B1, B2, · · · , Bn of real numbers.

Definition II.4 (Uncertainty distribution [17]). The uncertain-
ty distribution Φ of an uncertain variable ξ is defined by
Φ(x) = M {ξ ≤ x} for any real number x.

An uncertainty distribution Φ is said to be regular if it is
a continuous and strictly increasing with respect to x, with
0 < Φ(x) < 1, and lim

x→−∞
Φ(x) = 0, lim

x→+∞
Φ(x) = 1. A

regular uncertainty distribution has an inverse function, which
is defined as the inverse uncertainty distribution, denoted by
Φ−1(α), α ∈ (0, 1). Inverse uncertainty distributions play
a central role in uncertainty theory, since the uncertainty
distribution of a function of uncertain variables is calculated
using the inverse uncertainty distributions:
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Theorem II.1 (Operational law [18]). Let ξ1, ξ2, · · · , ξn
be independent uncertain variables with regular uncertainty
distributions Φ1,Φ2, · · · ,Φn, respectively. If f(ξ1, ξ2, · · · , ξn)
is strictly increasing with respect to ξ1, ξ2, · · · , ξm and strictly
decreasing with respect to ξm+1, ξm+2, · · · , ξn, then ξ =
f(ξ1, ξ2, · · · , ξn) has an inverse uncertainty distribution

Ψ−1(α) =f(Φ−1
1 (α), · · · ,Φ−1

m (α),

Φ−1
m+1(1− α), · · · ,Φ−1

n (1− α)).
(II.1)

Definition II.5 (Expected value [17]). Let ξ be an uncertain
variable. Then the expected value of ξ is defined by

E[ξ] =

∫ +∞

0

M{ξ ≥ x}dx−
∫ 0

−∞
M{ξ ≤ x}dx. (II.2)

The expected value of an uncertain variable can be also cal-
culated using its uncertainty distribution or inverse uncertainty
distribution.

Theorem II.2. [17] Let ξ be an uncertain variable with an
uncertainty distribution Φ. Then

E[ξ] =

∫ +∞

0

(1− Φ(x))dx−
∫ 0

−∞
Φ(x)dx.

Theorem II.3. [18] Let ξ be an uncertain variable with a
regular uncertainty distribution Φ. Then

E[ξ] =

∫ 1

0

Φ−1(α)dα.

B. Chance theory

Chance theory is founded by Liu [31], [39] as a mixture
of uncertainty theory and probability theory, to deal with
problems affected by both aleatory uncertainty (randomness)
and epistemic uncertainty. The basic concept in chance theory
is the chance measure of an event in a chance space.

Let (Γ,L,M) be an uncertainty space, and (Ω,A,Pr) be
a probability space. Then (Γ,L,M) × (Ω,A,Pr) is called a
chance space.

Definition II.6 (chance measure [31]). Let (Γ,L,M) ×
(Ω,A,Pr) be a chance space, and let Θ ∈ L×A be an event.
Then the chance measure of Θ is defined as

Ch{Θ} =

∫ 1

0

Pr {ω ∈ Ω|M{γ ∈ Γ|(γ, ω) ∈ Θ} ≥ x} dx.
(II.3)

Theorem II.4. [31] Let (Γ,L,M) × (Ω,A,Pr) be a chance
space. Then

Ch{Λ×A} = M{Λ} × Pr{A} (II.4)

for any Λ ∈ L and any A ∈ A. Especially, we have

Ch{∅} = 0, Ch{Γ× Ω} = 1. (II.5)

Definition II.7 (Uncertain random variable [31]). An uncer-
tain random variable is a function ξ from a chance space
(Γ,L,M) × (Ω,A,Pr) to the set of real numbers such that
{ξ ∈ B} is an event in L × A for any Borel set B of real
numbers.

Random variables and uncertain variables are two special
cases of uncertain random variables. If an uncertain random
variable ξ(γ, ω) does not vary with γ, it degenerates to a
random variable. If an uncertain random variable ξ(γ, ω) does
not vary with ω, it degenerates to an uncertain variable.

Example II.1. Let η1, η2, · · · , ηm be random variables and
τ1, τ2, · · · , τn be uncertain variables. If f is a measurable
function, then

ξ = f (η1, η2, · · · , ηm, τ1, τ2, · · · , τn)

is an uncertain random variable determined by

ξ(γ, ω) =f(η1(ω), η2(ω), · · · , ηm(ω),

τ1(γ), τ2(γ), · · · , τn(γ))

for all (γ, ω) ∈ Γ× Ω.

Definition II.8. Let ξ be an uncertain random variable. Then
its chance distribution is defined by

Φ(x) = Ch{ξ ≤ x} (II.6)

for any x ∈ ℜ.

Example II.2. As a special uncertain random variable, the
chance distribution of a random variable η is just its probability
distribution, that is,

Φ(x) = Ch{η ≤ x} = Pr{η ≤ x}.

Example II.3. As a special uncertain random variable, the
chance distribution of an uncertain variable τ is just its
uncertainty distribution, that is,

Φ(x) = Ch{τ ≤ x} = M{τ ≤ x}.

Theorem II.5. [39] Let η1, η2, · · · , ηm be independent ran-
dom variables with probability distributions Ψ1,Ψ2, · · · ,Ψm,
respectively, and let τ1, τ2, · · · , τn be uncertain variables. As-
sume f is a measurable function. Then the uncertain random
variable

ξ = f(η1, η2, · · · , ηm, τ1, τ2, · · · , τn)

has a chance distribution

Φ(x) =

∫
ℜm

F (x; y1, y2, · · · , ym)

dΨ1(y1)dΨ2(y2) · · · dΨm(ym),

(II.7)

where F (x; y1, y2, · · · , ym) is the uncertainty distribution of
the uncertain variable f(y1, y2, · · · , ym, τ1, τ2, · · · , τn).

Definition II.9. [31] Let ξ be an uncertain random variable.
Then its expected value is defined by

E[ξ] =

∫ +∞

0

Ch{ξ ≥ x}dx−
∫ 0

−∞
Ch{ξ ≤ x}dx, (II.8)

provided that at least one of the two integrals is finite.

Theorem II.6. [31] Let ξ be an uncertain random variable
with chance distribution Φ. Then

E[ξ] =

∫ +∞

0

(1− Φ(x))dx−
∫ 0

−∞
Φ(x)dx. (II.9)

3
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If Φ(x) is a regular chance distribution, we can calculate
the expected value by means of the inverse distribution [31]:

E[ξ] =

∫ 1

0

Φ−1(α)dα. (II.10)

Definition II.10. Let ξ be an uncertain random variable with
finite expected value e. Then the variance of ξ is

V [ξ] = E[(ξ − e)2]. (II.11)

Since (ξ−e)2 is a nonnegative uncertain random variable, we
also have

V [ξ] =

∫ +∞

0

Ch{(ξ − e)2 ≥ x}dx. (II.12)

III. BELIEF RELIABILITY METRIC

In this section, we will introduce the belief reliability
metric to measure reliability of uncertain random systems.
Usually, we are interested in the state of a system under given
conditions. Therefore, we define a state variable which is able
to describe the system function or failure behaviors. In an
uncertain random system, the states of some components are
modeled as random variables and those of other components
are described as uncertain variables. Therefore, the state
variable of the system will be an uncertain random variable.
When the system state variable is within a feasible domain,
which reflects our tolerance degree of failure, the system is
regarded to be reliable under this state. Based on this, the
belief reliability is defined as follows.

Definition III.1 (Belief reliability). Let a system state variable
ξ be an uncertain random variable, and Ξ be the feasible
domain of the system state. Then the belief reliability is
defined as the chance that the system state is within the feasible
domain, i.e.,

RB = Ch{ξ ∈ Ξ}. (III.1)

Remark III.1. If the state variable ξ degenerate to a random
variable, the belief reliability metric will be a probability. Let
R

(P )
B denotes the belief reliability under probability theory.

Then
RB = R

(P )
B = Pr{ξ ∈ Ξ}. (III.2)

This means the system is mainly influenced by aleatory uncer-
tainty, and the belief reliability degenerate to the probability
theory-based reliability metric.

Remark III.2. If the state variable ξ degenerate to an un-
certain variable, the belief reliability metric will be a belief
degree. Let R

(U)
B denotes the belief reliability under uncer-

tainty theory. Then

RB = R
(U)
B = M{ξ ∈ Ξ}. (III.3)

This means the system is mainly influenced by epistemic un-
certainty, and the belief reliability degenerate to the uncertainty
theory-based reliability metric.

In Definition III.1, the state variable ξ describes the system
behavior, while the feasible domain Ξ is a reflection of failure
criteria. In reliability engineering, ξ is a physical quantity that

can be measured or predicted through tests, physical models
or online monitoring. Ξ is usually described mathematically
as a subset of real numbers (eg., an interval) which include
the acceptable values of ξ. When the value of ξ falls in
Ξ, we say the system is working well, otherwise we say
the system fails. For example, ξ may represent the system
performance margin and ξ > 0 means the system is working,
then correspondingly, Ξ will be interval (0,+∞). To better
demonstrate belief reliability metric and the physical meaning
of ξ and Ξ, we will offer 3 examples in the following parts.
Another point that should be emphasized is that both ξ and Ξ
can be relevant to time t, since the system behavior and the
failure criteria usually vary with time in practice. Therefore,
the belief reliability is usually a function of t, denoted as
RB(t), which is regarded as belief reliability function in this
paper.

Example III.1. The state variable can be the system failure
time T which describes system failure behaviors. The system
is regarded to be reliable at time t if the failure time is greater
than t. Thus, the belief reliability of the system at time t can
be obtained by letting the feasible domain of T to be (t,+∞).
In this case, the belief reliability will be written as the form
with respect to the failure time:

RB(t) = Ch{T > t}. (III.4)

If the system is mainly affected by aleatory uncertainty, the
system failure time will be modeled as a random variable T (P ).
The system belief reliability becomes

RB(t) = R
(P )
B (t) = Pr{T (P ) > t}.

Similarly, if the system contains great epistemic uncertainty,
the system failure time will be described as an uncertain
variable T (U). The system belief reliability becomes

RB(t) = R
(U)
B (t) = M{T (U) > t}.

Example III.2. The state variable can represent the perfor-
mance margin m (defined by Zeng et al. [40]) of a system,
which describes system function behaviors. m indicates the
distance between a performance parameter and the associated
failure threshold. A failure will occur if m < 0 and m = 0
indicates an unstable critical state. Therefore, the system
feasible domain, in this case, should be (0,+∞) and the
system belief reliability can be written as the form with respect
to the performance margin:

RB = Ch{m > 0}. (III.5)

If we consider the degradation process of the performance
margin, i.e., the state variable is relevant to t, RB(t) will be

RB(t) = Ch{m(t) > 0}. (III.6)

The failure time T and the performance margin m are
the most commonly used system state variable in reliability
engineering. Considering the effect of time, the function
behavior represented by m will finally convert to the failure
behavior described by T . Therefore, the meanings expressed
by the two forms of belief reliability metric (III.4) and (III.6)
are consistent. Actually, m(t) is an uncertain random process

4
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with a threshold level of 0. The first hitting time of m(t) will
be

t0 = inf{t ≥ 0|m(t) = 0} (III.7)

with a chance distribution of Υ(t). Since t0 is just the failure
time of the product, we have

RB(t) = Ch{m(t) > 0} = 1−Υ(t) = Ch{T > t}. (III.8)

Example III.3. If we consider a multi-state system, the
state variable should be the system function level, denoted
as G, which describes the behavioral status of a system as
it performs its specified function. Assume the system has
k different function levels G = i, i = 0, 1, · · · , k with a
lowest acceptable level of G = s. Let G = k represent the
system functions perfectly, and G = i, i = s, s+1, · · · , k− 1
reflect the different degraded working states, then the system
belief reliability can be obtained by letting the system feasible
domain to be {s, s+ 1, · · · , k}, i.e.,

RB = Ch {G ∈ {s, s+ 1, · · · , k}} . (III.9)

The effect of time, of course, can be also considered by
assuming the system function level vary with time, that is

RB(t) = Ch {G(t) ∈ {s, s+ 1, · · · , k}} . (III.10)

For Eq. (III.9), if the system only has two function levels,
namely, complete failure with G = 0 and perfectly function
with G = 1, the system belief reliability will just be the metric
proposed by Wen and Kang [37], i.e.,

RB = Ch {G = 1} . (III.11)

Therefore, the reliability metric they developed is exactly a
special case of the belief reliability defined in this paper.

IV. SOME BELIEF RELIABILITY INDEXES

In this section, some commonly used belief reliability
indexes, including belief reliability distribution, belief reliable
life, mean time to failure and variance of failure time, are
defined based on the belief reliability metric.

Definition IV.1 (Belief Reliability Distribution). Assume that
a system state variable ξ is an uncertain random variable, then
the chance distribution of ξ, i.e.,

Φ(x) = Ch{ξ ≤ x}, (IV.1)

is defined as the belief reliability distribution.

Example IV.1. If ξ represents the product failure time T , the
belief reliability distribution will be the chance distribution of
T , denoted as Φ(t) = Ch{T ≤ t}. In this case, the sum of
Φ(t) and RB(t) equals 1, i.e.,

Φ(t) +RB(t) = 1. (IV.2)

Example IV.2. If ξ represents the system performance mar-
gin m, the belief reliability distribution will be the chance
distribution of m, denoted as Φ(x) = Ch{m ≤ x}.

Definition IV.2 (Belief Reliable Life). Assume the system
failure time T is an uncertain random variable with a belief

reliability function RB(t). Let α be a real number from (0, 1).
The system belief reliable life T (α) is defined as

T (α) = sup{t|RB(t) ≥ α}. (IV.3)

Example IV.3. BL1 life is defined as

tBL1 = T (0.99) = sup{t|RB(t) ≥ 0.99},

which is one of the most commonly used belief reliable life.
It means that the systems have a chance of 0.99 to survive till
this time.

Example IV.4. The median time to failure is also commonly
used in reliability engineering, which is defined as

tmed = T (0.5) = sup{t|RB(t) ≥ 0.5}.

Apparently, to identify whether a system has the chance to
work till tmed is the most difficult.

Definition IV.3 (Mean Time to Failure, MTTF). Assume the
system failure time T is an uncertain random variable with
a belief reliability function RB(t). The mean time to failure
(MTTF) is defined as

MTTF = E[T ] =

∫ ∞

0

Ch{T > t}dt =
∫ ∞

0

RB(t)dt.

(IV.4)

Theorem IV.1. Let RB(t) be a continuous and strictly de-
creasing function with respect to t at which 0 < RB(t) <
RB(0) ≤ 1 and lim

t→+∞
RB(t) = 0. If T (α) is defined by

(IV.3), then we have

MTTF =

∫ 1

0

T (α)dα. (IV.5)

Proof. Assume the belief reliability distribution of T is Φ(t),
then we have RB(t) = Ch{T > t} = 1 − Ch{T < t} =
1−Φ(t). Since RB(t) has inverse function, Φ(t) has an inverse
distribution Φ−1(α). It follows from (IV.3) that

T (α) = sup{t|Φ(t) ≤ 1− α} = Φ−1(1− α). (IV.6)

Thus, MTTF can be written as

MTTF = E[T ] =

∫ 1

0

Φ−1(α)dα

=

∫ 1

0

Φ−1(1− α)dα =

∫ 1

0

T (α)dα.

(IV.7)

Definition IV.4 (Variance of failure time, VFT). Assume the
system failure time T is an uncertain random variable and the
mean time to failure is MTTF. The variance of failure time
(VFT) is defined as

VFT = V [T ] = E
[
(T − MTTF)2

]
. (IV.8)

Theorem IV.2. Let the belief reliability function be RB(t),
then the VFT can be calculated by

VFT =

∫ +∞

0

(RB(MTTF +
√
t)+

1−RB(MTTF −
√
t))dt.

(IV.9)

5
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Proof. Since (T−MTTF)2 is a nonnegative uncertain random
variable, we have

VFT =

∫ +∞

0

Ch{(T −MTTF )2 ≥ t}dt

=

∫ +∞

0

Ch{(T ≥ MTTF +
√
t)∪

(T ≤ MTTF −
√
t)}dt

≤
∫ +∞

0

(Ch{T ≥ MTTF +
√
t}+

Ch{T ≤ MTTF −
√
t})dt

=

∫ +∞

0

(RB(MTTF +
√
t)+

1−RB(MTTF −
√
t))dt.

(IV.10)

In this case, we stipulate that VFT takes the maximum value
in (IV.10), i.e.,

VFT =

∫ +∞

0

(RB(MTTF +
√
t)+

1−RB(MTTF −
√
t))dt.

(IV.11)

V. SYSTEM BELIEF RELIABILITY FOMULAS

This section will propose some system belief reliability
formulas. In this paper, we only discuss the situation that the
system state variable ξ is failure time. The circumstances that ξ
stands for performance margin or function level can be studied
similarly.

Here, in an uncertain random system, the components
mainly affected by aleatory uncertainty are regarded as random
components whose failure times are described as random vari-
ables, while those mainly influenced by epistemic uncertainty
are called uncertain components with failure times represented
by uncertain variables.

A. Belief reliability formula for simple systems

Sometimes, an uncertain random system can be simplified
to be composed of two types of subsystems — a random
subsystem only including random components and an uncer-
tain subsystem only containing uncertain components, and the
two types of subsystems will be connected in either series or
parallel. We do not strictly require the configurations inside
the two subsystems and they can be very complex. The belief
reliability of this kind of systems can be also calculated based
on the following theorems.

Theorem V.1. Assume an uncertain random system is sim-
plified to be composed of a random subsystem with belief
reliability R

(P )
B,R(t) and an uncertain subsystem with belief

reliability R
(U)
B,U (t). If the two subsystems are connected in

series, the system belief reliability RB,S(t) will be

RB,S(t) = R
(P )
B,R(t) ·R

(U)
B,U (t). (V.1)

Proof. Assume the failure times of the random components
and uncertain components in the two types of subsystems
are η1, η2, · · · , ηm and τ1, τ2, · · · , τn, respectively. According

to the configurations of the subsystems, the failure times
of the random subsystem T

(P )
R and the uncertain subsystem

T
(U)
U are determined by T

(P )
R = f(η1, η2, · · · , ηm) and

T
(U)
U = g(τ1, τ2, · · · , τn), respectively, where f and g are two

measurable functions. Therefore, T
(P )
R is a random variable

and T
(U)
U is an uncertain variable. Since the two subsystems

are connected in series, the system failure time can be written
as:

T = T
(P )
R ∧ T

(U)
U .

Then we have

RB,S(t) = Ch{T > t}
= Ch{T (P )

R ∧ T
(U)
U > t}

= Ch
{(

T
(P )
R > t

)
∩
(
T

(U)
U > t

)}
= Pr

{
T

(P )
R > t

}
×M

{
T

(U)
U > t

}
= R

(P )
B,R(t) ·R

(U)
B,U (t).

(V.2)

Example V.1 (Series system). Consider an uncertain ran-
dom series system comprising m random components with
belief reliabilities R

(P )
B,i (t), i = 1, 2, · · · ,m, and n uncertain

components with belief reliabilities R
(U)
B,j(t), j = 1, 2, · · · , n.

Then the system can be simplified to be consist of a random
subsystem and an uncertain subsystem both with series con-
figurations, and the two subsystems are connected in series.
Assume the failure times of random and uncertain components
are η1, η2, · · · , ηm and τ1, τ2, · · · , τn, respectively. Then the
belief reliability of the system RB,S(t) can be calculated
according to Theorem V.1:

RB,S(t) = R
(P )
B,R(t) ·R

(U)
B,U (t)

= Pr

{
m∧
i=1

ηi > t

}
×M


n∧

j=1

τj > t


= Pr

{
m∩
i=1

(ηi > t)

}
×M


n∩

j=1

(τj > t)


=

m∏
i=1

R
(P )
B,i (t) ·

n∧
j=1

R
(U)
B,j(t).

(V.3)

Example V.2 (Parallel series system). Consider an uncertain
random parallel series system comprising m random compo-
nents with belief reliabilities R

(P )
B,i (t), i = 1, 2, · · · ,m, and

n uncertain components with belief reliabilities R
(U)
B,j(t), j =

1, 2, · · · , n. Suppose the system can be simplified to be consist
of a random subsystem and an uncertain subsystem both with
parallel configurations, and the two subsystems are connected
in series. By assuming the failure times and random and
uncertain components to be η1, η2, · · · , ηm and τ1, τ2, · · · , τn,
respectively, the belief reliability of the system RB,S(t) can

6
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be calculated according to Theorem V.1:

RB,S(t) = R
(P )
B,R(t) ·R

(U)
B,U (t)

= Pr

{
m∨
i=1

ηi > t

}
×M


n∨

j=1

τj > t


=

(
1− Pr

{
m∨
i=1

ηi ≤ t

})
·1−M


n∨

j=1

τj ≤ t




=

(
1− Pr

{
m∩
i=1

(ηi ≤ t)

})
·1−M


n∩

j=1

(τj ≤ t)




=

(
1−

m∏
i=1

(1−R
(P )
B,i (t))

)
·

n∨
j=1

R
(U)
B,j(t).

(V.4)

Theorem V.2. Assume an uncertain random system is simpli-
fied to be composed of a random subsystem with belief relia-
bility R

(P )
B,R and an uncertain subsystem with belief reliability

R
(U)
B,U . If the two subsystems are connected in parallel, the

system belief reliability will be

RB,S(t) = 1−
(
1−R

(P )
B,R(t)

)
·
(
1−R

(U)
B,U (t)

)
. (V.5)

Proof. Similar to the proof of Theorem V.1, the failure times
of random subsystem T

(P )
R and uncertain subsystem T

(U)
U are

random variable and uncertain variable, respectively. Since the
two subsystems are connected in parallel, the system failure
time can be written as:

T = T
(P )
R ∨ T

(U)
U .

Then we have

RB,S(t) = Ch{T > t}
= Ch{T (P )

R ∨ T
(U)
U > t}

= 1− Ch
{
T

(P )
R ∨ T

(U)
U ≤ t

}
= 1− Ch

{(
T

(P )
R ≤ t

)
∩
(
T

(U)
U ≤ t

)}
= 1− Pr

{
T

(P )
R ≤ t

}
×M

{
T

(U)
U ≤ t

}
= 1−

(
1−R

(P )
B,R(t)

)
·
(
1−R

(U)
B,U (t)

)
.

(V.6)

Example V.3 (Parallel system). Consider an uncertain ran-
dom parallel system comprising m random components with
belief reliabilities R

(P )
B,i (t), i = 1, 2, · · · ,m, and n uncertain

components with belief reliabilities R
(U)
B,j(t), j = 1, 2, · · · , n.

Then the system can be simplified to be consist of a random
subsystem and an uncertain subsystem both with parallel con-
figurations, and the two subsystems are connected in parallel.
Assume the failure times of random and uncertain components
are η1, η2, · · · , ηm and τ1, τ2, · · · , τn, respectively. Then the

belief reliability of the system RB,S(t) can be calculated
according to Theorem V.2:

RB,S(t) = 1−
(
1−R

(P )
B,R(t)

)
·
(
1−R

(U)
B,U (t)

)
= 1−

(
1− Pr

{
m∨
i=1

ηi > t

})
·1−M


n∨

j=1

τj > t




= 1− Pr

{
m∨
i=1

ηi ≤ t

}
×M


n∨

j=1

τj ≤ t


= 1− Pr

{
m∩
i=1

(ηi ≤ t)

}
×M


n∩

j=1

(τj ≤ t)


= 1−

(
m∏
i=1

(1−R
(P )
B,i (t))

)
·

1−
n∨

j=1

R
(U)
B,j(t)

 .

(V.7)

Example V.4 (Series parallel system). Consider an uncertain
random series parallel system comprising m random compo-
nents with belief reliabilities R

(P )
B,i (t), i = 1, 2, · · · ,m, and

n uncertain components with belief reliabilities R
(U)
B,j(t), j =

1, 2, · · · , n. Suppose the system can be simplified to be consist
of a random subsystem and an uncertain subsystem both with
series configurations, and the two subsystems are connected
in parallel. By assuming the failure times and random and
uncertain components to be η1, η2, · · · , ηm and τ1, τ2, · · · , τn,
respectively, the belief reliability of the system RB,S(t) can
be calculated according to Theorem V.2:

RB,S(t) = 1−
(
1−R

(P )
B,R(t)

)
·
(
1−R

(U)
B,U (t)

)
= 1−

(
1− Pr

{
m∧
i=1

ηi > t

})
·1−M


n∧

j=1

τj > t




= 1−

(
1− Pr

{
m∩
i=1

(ηi > t)

})
·1−M


n∩

j=1

(τj > t)




= 1−

(
1−

m∏
i=1

R
(P )
B,i (t)

)
·

1−
n∧

j=1

R
(U)
B,j(t)

 .

(V.8)

B. Belief reliability formula for complex systems

For more complex system, such as an uncertain random
k-out-of-n system, it is much harder to obtain the system
belief reliability functions directly. In this paper, we assume
the system only have two states. Therefore, at first, we do not
consider the effect of time, then the uncertain random system

7
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can be regarded as a Boolean system. In this case, the system
reliability formula proposed by Wen and Kang [37] is first
adopted. It is noted that the formula can be easily extended
to a time-variant situation by performing the formula at each
time of the system lifetime.

Theorem V.3. (Wen and Kang[37]) Assume that a Boolean
system has a structure function f and contains random com-
ponents with belief reliabilities R

(P )
B,i (t), i = 1, 2, · · · ,m and

uncertain components with belief reliabilities R
(U)
B,j(t), j =

1, 2, · · · , n. Then the belief reliability of the system is

RB,S(t) =
∑

(y1,··· ,ym)∈{0,1}m

(
m∏
i=1

µi(yi, t)

)
·

Z(y1, y2, · · · , ym, t),

(V.9)

where

Z(y1, y2, · · · , ym, t)

=



sup
f(y1,··· ,ym,z1,··· ,zn)=1

min
1≤j≤n

νj(zj , t),

if sup
f(y1,··· ,ym,z1,··· ,zn)=1

min
1≤j≤n

νj(zj , t) < 0.5,

1− sup
f(y1,··· ,ym,z1,··· ,zn)=0

min
1≤j≤n

νj(zj , t),

if sup
f(y1,··· ,ym,z1,··· ,zn)=1

min
1≤j≤n

νj(zj , t) ≥ 0.5,

µj(yi, t) =

{
R

(P )
B,i (t), if yi = 1,

1−R
(P )
B,i (t), if yi = 0,

(i = 1, 2, · · · ,m),

νj(zj , t) =

{
R

(U)
B,i (t), if zj = 1,

1−R
(U)
B,i (t), if zj = 0,

(j = 1, 2, · · · , n).

C. Case study

Consider an apogee engine of a satellite proposed in [41].
The mission of the engine is to start at apogee and send the
satellite into the synchronous orbit. To ensure the the success
of the mission, the engine should not fail within the first 2
working hours. The engine is mainly consist of four parts:
an ignition structure, an engine shell, a propellant grain and
a nozzle. The ignition structure can be further decomposed
into three kinds of components, namely, an igniter, two spark
plugs (including one back-up spark plug) and some ignition
composition. Among the components, the ignition composition
and the nozzle are innovative products with few failure data, so
they are modeled as uncertain components in this paper. The
failure time distributions of the two components are obtained
based on experts’ empirical data. Since other components are
mature product with a lot of failure time data, we model
them as random components, whose failure time distributions
are obtained through statistical method based on field or
experimental failure data.

The working process of the apogee engine can be sum-
marized as follows. First the igniter receives command and
generates a pulse, then it ignites the ignition composition
through the spark plugs. Later, the propellant grain is burned,
generating a lot of gas. The gas will ejected from the nozzle to
outside, thereby propel the satellite. The whole process takes

TABLE I
FAILURE TIME DISTRIBUTIONS OF COMPONENTS

No. Component type Failure time distribution

1-1,1-2,1-2’ Random Exponential(λ = 10−2.5h−1)
1-3 Uncertain L(150h, 400h)
2,3 Random Exponential(λ = 5× 10−3.5h−1)
4 Uncertain L(100h, 500h)

place in the engine shell. It can be easily noticed that the
engine will fail whenever a sort of component fail. Therefore,
the reliability block diagram of the apogee engine can be
represented by Fig. 1. The failure time distributions of these
components are listed in Table I.

1-1

1-2

1-2'

1-3 2 3 4

1

Fig. 1. Reliability block diagram of the apogee engine (1: ignition structure,
2: engine shell, 3: propellant grain, 4: nozzle, a: igniter, b: spark plug, b:
back-up plug, c: ignition composition)

By merging the same type of components, we obtain two
subsystems: a random subsystem containing all random com-
ponents 1-1, 1-2, 1-2’, 2 and 3, and an uncertain subsystem
containing all uncertain components 1-3 and 4. We first
calculate the belief reliability of the two subsystems.

R
(P )
B,R(t) =

[
1−

(
1−R

(P )
B,1−2(t)

)(
1−R

(P )
B,1−2′(t)

)]
·

R
(P )
B,1−1(t) ·R

(P )
B,2(t) ·R

(P )
B,3(t)

= e−2×10−2.5t ·
(
2e−10−2.5t − e−2×10−2.5t

)
= 2e−3×10−2.5t − e−4×10−2.5t,

(V.10)

R
(U)
B,U (t) = R

(U)
B,1−3(t) ∧R

(U)
B,4(t)

=


1, if t ≤ 100h,
600−t
500 , if 100h < t ≤ 200h,

400−t
250 , if 200h < t ≤ 400h,

0, if t > 400h.

(V.11)

Then the system can be regarded as a series system con-
sisting of a random subsystem and an uncertain subsystem.
According to Theorem V.1, we have

RB,S(t) = R
(P )
B,R(t) ·R

(U)
B,U (t). (V.12)

The system belief reliability function is illustrated in Fig.2.
We can get the system reliability at 2h is RB,S(2h) = 0.9874.
Using numerical methods, the MTTF of the system can be also
calculated to be MTTF = 114.25h. This means that we can
have a good faith that the mission will be successful.

VI. CONCLUSION

In this paper, belief reliability metric is defined based on
chance theory to measure reliability of uncertain random
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Fig. 2. System belief reliability of the apogee engine

systems affected by both aleatory and epistemic uncertainties.
The developed metric can degenerate to the probability theory-
based reliability metric or the uncertainty theory-based belief
reliability metric. Some belief reliability indexes, including
belief reliability distribution, MTTF, belief reliable life, are
proposed on the basis of the belief reliability metric. In
addition, this paper managed to propose some system belief
reliability formulas. For different system configurations, dif-
ferent belief reliability formula can be used. A simple case
study is given to further illustrated the proposed metric and
formulas.

In conclusion, the contributions of this paper are as follows:
(1) The definition and concept of belief reliability is expanded

based on chance theory considering both aleatory and
epistemic uncertainties.

(2) The belief reliability metric and its physical meaning is
first interpreted in detail from the view of failure time,
performance margin and function level.

(3) Some new belief reliability indexes are proposed based on
the new definition of belief reliability.

(4) Several new system belief reliability formulas are devel-
oped to analyze the belief reliability of uncertain random
systems.

The future works may focus on the reliability modeling,
analysis methods, etc. One of the most interesting issues is to
obtain the belief reliability of a product through its physical
model of performance margin, as briefly elaborated in this
paper. Another important and interesting problem is to give a
belief reliability evaluation method of muti-state systems.
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Abstract

Belief reliability considers the influences of design margin, aleatory uncertain-
ty and epistemic uncertainty, which gives a more comprehensive evaluation
on reliability. The quantification of epistemic uncertainty plays a pivotal role
in belief reliability analysis. In this paper, we establish a model to quanti-
fy epistemic uncertainty based on technology readiness levels (TRLs) which
illustrate the state of technology in terms of maturity. First, a general evalu-
ating process for TRLs is developed. Based on this, the concepts of quality of
technology readiness condition and technology readiness score are first pro-
posed to comprehensively measure the TRL. Then, the epistemic uncertainty
is quantified through a mathematical model which integrating the effect of
TRL and the technology readiness score. Finally, a case study is applied on
a quad redundant servo system to demonstrate the proposed model.

Keywords: Uncertainty Modeling, Epistemic Uncertainty, Technology
Readiness Levels

1. Introduction

Traditionally, reliability is defined to be the probability that a compo-
nent or system will perform a required function for a given period of time
when used under stated operating conditions [1]. It is the probability of non-
failure over time and then the failure time has been adopted as original data
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to estimate reliability by statistical methods [2]. Model-based approaches
have been then proposed to predict reliability when the failure data is s-
carce, which includes physics-of-failure methods [3, 4], structural reliability
methods [5, 6], etc. These methods use a deterministic model to describe
the failure behavior of a component or a system and uncertainties are taken
into consideration by using random variables in these deterministic models.
Such type of uncertainty could be referred to as aleatory uncertainty as it
is the inherent property in the physics behavior of the system. In contrast
with aleatory uncertainty, there also exits epistemic uncertainty influencing
reliability assessment. Epistemic uncertainty derives from a lack of knowl-
edge about the appropriate value to use for a quantity that is assumed to
have a fixed value in the context of the particular analysis or the adoption
of deterministic models [7, 8].

Regarding the impact of epistemic uncertainty, Zeng et al. [9] proposed
belief reliability which considers the influences of design margin, aleatory un-
certainty and epistemic uncertainty. In that framework, epistemic uncertain-
ty was quantified based on the state of knowledge by evaluating the commonly
used epistemic-uncertainty-related engineering activities, i.e., Failure Mode,
Effect and Criticality Analysis (FMECA), Failure Reporting, Analysis and
Corrective Action System (FRACAS), Reliability Enhancement Test (RET),
Reliability Growth Test (RGT) and Reliability Simulation Test (RST) [9].
These reliability engineering activities could help designers better understand
potential failure modes and mechanisms. In other words, these reliability en-
gineering activities were employed to quantify the state of knowledge in terms
of failure.

In this paper, epistemic uncertainty is quantified by technology readi-
ness levels (TRLs). TRLs were first proposed by the National Aeronautics
and Space Administration (NASA) as a discipline-independent programmat-
ic figure of merit to allow more effective assessment and communication re-
garding the maturity of new technologies [10]. The TRL system was defined
as a seven-level one at 1989 [11] and then in 1995, the TRL scale was fur-
ther strengthened by the articulation of the definitions of each level along
with examples [12]. Over the last three decades, the TRL system has been
tailored to and adopted by various industrial and government organization-
s,such as U.S. Department of Energy, U.S. Government Accountability Office
and International Organization for Standardization [13–15]. TRLs have been
used to evaluate the maturity of hardware and software technologies critical
to the performance of a large system or the fulfillment of the key objec-
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tives of an acquisition program [10] and have provided a means of managing
risks and making better decisions in various fields, such as gas[16], aviation
industry[17], Terahertz[18], recycling technology[19] and bioprinting [20]. In
general, the TRL system describes a typical product development and deploy-
ment path. This metric classifies the maturity status of a technology staring
from basic principles all way up to systems proven through successful mission
operations. The initial TRL is usually defined as basic discipline research.
At this level, only some basic concepts or principles have been obtained by
researchers. Thus, epistemic uncertainty is formidable and employing tech-
nology at this level may lead to tremendous risk. The final TRL is generally
referred to system test. At this level, actual system has been proved through
successful system and/or mission operations, which could be inferred that
the researchers have a better command of the system and there is less epis-
temic uncertainty than that at the initial level. Therefore, a quantification
model based on TRLs is proposed to quantify epistemic uncertainty.

The remainder of this paper is organized as follows. In Section 2, a gen-
eral evaluating framework of TRLs is developed by summarizing previous
work. An approach is proposed to quantify technology readiness in Section
3. Epistemic uncertainty quantification model and its properties are dis-
cussed in Section 4. A quad servo system is subsequently adopted as a case
to demonstrate the developed methods in Section 5. Finally, the paper is
concluded in Section 6.

2. General Evaluating Framework of TRLs

In this section, a general evaluating framework of TRLs is developed by
summarizing existing literatures.

2.1. Classification and definition of TRLs

Clarifying the classification and definition of each level is the first thing
to do when evaluating readiness level of a technology. This work could base
on either general definitions from existing standards or appropriative classifi-
cations for specific technologies. It is helpful to refer to extant definitions to
indicate the maturity of a given technology when the range of definitions is
appropriate. For example, Redo-Sanchez et al. [18] assessed the maturity of
Terahertz technology based on the definitions published by NASA [12]. Liu
and Fan [21] adopted the classifications released by U.S. DOE to evaluated
technology readiness of Small Modular Reactor (SMR) designs. On the other
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hand, there are cases beyond the scope of existing standards, where speci-
fied classifications and definitions of TRLs are proposed to satisfy practical
demands. For instance, Papafotiou et al. [22] proposed specialized descrip-
tions of TRLs for model predictive control technology in power electronics
and Carmack et al. [23] firstly provided definitions of TRLs for nuclear fu-
el technology to assess the maturity of nuclear fuels and materials under
development.

2.2. Determination of technology readiness conditions

After clarifying the classification and definition of TRLs, the next step is
to determine detailed technology readiness conditions for each TRL. General-
ly, these conditions could be classified into three types, technology conditions,
manufacture conditions and management conditions.

1. Technology conditions consist of design conditions and verification con-
ditions.

(a) Design conditions are referred to as research and design work com-
pleted in the development stage, which include acquaintance with
application requirements and operational environments, confirma-
tion of hypotheses and scientific principles, determination of tech-
nical properties and compilations of technical sources.

(b) Verification conditions are referred to as verification issues based
on the results of research and development, which are comprised
of objects, environments, results and key projects.

2. Manufacture conditions involve craft designs, manufacturing process-
es and processing facilities during the period of trial-manufacture or
manufacture.

3. Management conditions mainly include customer relationship manage-
ments, risk managements and cost managements.

It should be noted that each level contains different numbers of technology
conditions, manufacture conditions and management conditions and it is
possible to not include all three types of conditions. For example, TRL 1 is
referred to as basic principles observed and reported[14]. It is likely to only
contain technology conditions at TRL 1.
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2.3. Judgment on TRLs

The following step is to judge the current TRL of candidate technology
as shown in Fig.1 [24]. The judgment process could be divided into two
steps, initial judgment and further judgment. During the period of initial
judgment, it is necessary to roughly assess the TRL of candidate technology
based on the definition of TRLs and the research and development phase.
Further judgment is conducted based on the conclusion of initial judgment.
If all conditions of initial TRL N are satisfied, then evaluate the conditions
of a higher level until all the conditions of level N are satisfied while the
conditions of level N + 1 are not. If all conditions of initial TRL N are not
satisfied, then evaluate the conditions of a lower level, i.e. N − 1 level, until
all conditions of that level are satisfied or the conditions of TRL 1 are not all
satisfied. Eventually, the conclusion could be made from the above analysis.

Figure 1: Process diagram of judgment on TRLs

2.4. General evaluating framework

The general evaluating framework of TRLs contains three main steps,
classification and definition of TRLs, determination of technology readiness
conditions of each TRL and judgment of current TRL N . The whole process
is summarized in Fig.2. It can be obtained that the output of the framework
is current TRL N and all conditions of this TRL.
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Figure 2: General evaluating framework of TRLs

3. Quantification of technology readiness

In this section, an approach is proposed to quantify technology readiness
based the output of the general evaluating framework. Two concepts, quality
of technology readiness condition and technology readiness score, are firstly
defined to give a comprehensive description of technology readiness. Quality
of technology readiness condition measures the performance of technology
readiness conditions. Technology readiness score is a quantity to represent
the quantification result of technology readiness and is calculated by quality
of technology readiness conditions in conjunction with weights of experts,
relative contributions and relative importance.

3.1. Basic definitions

The execution of the same technology readiness condition may differ from
each other in different application scenarios. For example, the condition of
TRL 9 of NASA is that the final product is successfully operated in an actual
mission [12]. We assume that there are two cases. The success number of the
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two cases are 1 and 100. The two cases have both reached the requirement of
TRL 9 but the executions are obviously different. Therefore, it is necessary to
measure the performance of each condition. Quality of technology readiness
condition is proposed for this purpose.
Definition 1. Quality of technology readiness condition measures to what
extend a technology readiness condition is well executed. It is denoted by Q,
Q ∈ (0, 1].

It is noted that the larger the quality Q is, the better the condition is
executed. When Q goes to zero, the condition is believed to be just complet-
ed. On the other hand, the execution is believed to be well enough when Q
reaches one.
Definition 2. Technology readiness score measures comprehensive quality
of one technology readiness level.

Let Qijk be the quality of j-th technology readiness condition of i-th type
evaluated by k-th expert, ωi be the weights of relative importance of condition
type, ωij be the weights of relative contributions of technology readiness
condition and ωijk be the weights of experts, i = 1, 2, · · · , p, j = 1, 2, · · · ,mi,
k = 1, 2, · · · , n, then technology readiness score S is calculated by:

S =

p∑
i=1

ωi

(
mi∑
j=1

ωij

(
n∑

k=1

ωijkQijk

))
, (1)

where
p∑

i=1

ωi = 1,
mi∑
j=1

ωij = 1 and
n∑

k=1

ωijk = 1.

It is noted that the larger the score S is, the better the quality of TRL
is. When S goes to zero, the TRL is believed to be just arrived at. On the
other hand, the TRL is believed to be executed well enough when S reaches
one.

Technology readiness score is essentially determined by quality of tech-
nology readiness conditions. However, different quantification methods of
weights of experts, relative contributions and relative importance also have a
pivotal influence on the result of technology readiness score. The quantifica-
tion methods of these three types of weights will be discussed in the following
subsections.

3.2. Determination of weights of experts

Assume that there are n experts participate in the evaluation of quality
of technology readiness condition. Then there will be n crisp numbers for
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j-th technology readiness condition of i-th type, Qij1, Qij2, · · · , Qijn, which
reflects the opinions to the same object from different experts. It is believed
to be ideal if these numbers equal to each other. However, these numbers
are always different from each other. A weight determination method based
on the distance is adopted here to get a comprehensive result from these
scattered numbers.

Let Qij =
1
n

∑n
k=1Qijk, Qij ∈ (0, 1] be the mean value of quality of j-th

condition of i-th type. Then the distance dijk is defined as the absolute value
between Qijk and Qij and it is calculated by:

dijk = |Qijk −Qij|, dijk ∈ [0, 1). (2)

Subsequently, ω∗
ijk is determined by the distance dijk and acceptable

threshold λE.

ω∗
ijk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

ε
, if dijk = 0,

1

dijk
, if 0 < dijk ≤ λE,

1

10dijk
, if dijk > λE,

(3)

where ε is the calculation accuracy.
λE is the acceptable range of score discrepancies of expert opinion. The

larger the λE is, the higher the tolerance of score discrepancies is. An expert’s
opinion is distinguished from other experts’ when the distance is larger than
acceptable threshold. Therefore, this expert’s opinion should be less impor-
tant by the principle of majority compliance and the corresponding weight
should be relatively smaller.

Finally, the weights of experts is calculated from Eq.(4).

ωijk =
ω∗
ijk∑n

k=1 ω
∗
ijk

. (4)

3.3. Determination of weights of relative contributions

For convenience, let Qij =
∑n

k=i ωijkQijk be the quality of j-th technology
readiness condition of i-th type.

Suppose that there are mi quality of technology readiness conditions for
i-th type, Qi1, Qi2, · · · , Qimi

. It is intuitive that excellent quality of condition
can help to reduce the epistemic uncertainty. Therefore, the better quality
of condition is regarded to be more important.
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Based on this principle, the weights of relative contributions of technology
readiness condition, denoted by ωij, is determined as follows:⎧⎨⎩

ω∗
ij = e−max{λL−Qij ,0},

ωij =
ω∗
ij∑mi

j=1 ω
∗
ij

,
(5)

where λL is acceptable quality of technology readiness condition.
Since it almost has no contribution to reduce epistemic uncertainty when

Qij is near to zero, the corresponding weight ω∗
ij is relatively low. ω∗

ij in-
creases as the value of Qij increases. λL is the minimum value over which
there is no more decrement of epistemic uncertainty when Qij is increasing.
Therefore, ω∗

ij equal to 1 when Qij is over λL. Finally, the weights of relative
contributions ωij is calculated by ω∗

ij.

3.4. Determination of weights of relative importance of condition type

For convenience, let Qi =
∑mi

j=1 ωijQij be the quality of i-th type tech-
nology readiness condition.

Suppose that there are p quality of technology readiness types, Q1, Q2, · · · , Qp.
The weights of them are determined by pairwise comparison. Construct a
pairwise comparison matirx Ap×p.

A =

⎛⎜⎜⎜⎝
a11 a12 · · · a1p
a21 a22 · · · a2p
...

...
...

...
ap1 ap2 · · · app

⎞⎟⎟⎟⎠ (6)

where aij = 1/aji.
aij are determined by using relative scale measurement shown in Table

1. The pair-wise comparisons are done in terms of which type dominates the
other.

Having made the pair-wise comparisons the consistency is determined by
using the eigenvalue λmax to calculate the consistency index, CI as follows:
CI = (λmax − p)/(p− 1) , where p is the matrix size.

Judgment consistency can be checked by taking the consistency ratio
(CR) of CI with the appropriate value in Table 2. The CR is acceptable, if
it does not exceed 0.10. Otherwise, the judgment matrix is inconsistent. To
obtain a consistent matrix, judgments should be reviewed and improved.
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Table 1: Pair-wise comparison scale for technology readiness types

Numerical rating Verbal judgments
9 Extremely important
8 Very strongly to extremely important
7 Very strongly important
6 Strongly to Very strongly
5 Strongly important
4 Moderately to strongly
3 Moderately important
2 Equally to moderately
1 Equally important

Table 2: Average random consistency (RI)

Size of matrix 1 2 3 4 5 6 7 8 9 10
Random consistency 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

Then (ω∗
1, ω

∗
2, · · · , ω∗

p) is the eigenvector of λmax. The weights of relative
importance of condition type is calculated by:

ωi =
ω∗
i∑p

i=1 ω
∗
i

. (7)

4. Epistemic Uncertainty Quantification Model

In this section, the relationship among epistemic uncertainty, curren-
t technology readiness level and technology readiness score is displayed in
the epistemic uncertainty quantification model.
Definition 3. Epistemic uncertainty quantification model is a function aim-
ing for quantifying epistemic uncertainty by current technology readiness
level and technology readiness score. Let E be epistemic uncertainty, N be
current technology readiness level and S be technology readiness score. Then
epistemic uncertainty quantification model is:

E(N,S) =
(1− S)

N × S2
, N ∈ {1, 2, · · · , Nmax}, S ∈ (0, 1]. (8)

Theorem 1.

(1) E is a monotone decreasing function of S,
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(2) The absolute value of slope of E is a monotone decreasing function
of S,

(3) lim
S→0

E = ∞,

(4) E(N, 1) = 0.

Proof:
(1) As S ∈ (0, 1] and N is a positive integer, we have:

∂E

∂S
=

−S2 − 2(1− S)S

N × S4
=

S − 2

N × S3
< 0.

Therefore, E is a monotone decreasing function of S.
(2) As S ∈ (0, 1] and N is a positive integer, we have:

∂2E

∂S2
=

S3 − 3(S − 2)S2

N × S6
=

6− 2S

N × S4
> 0.

which shows that the tendency is monotone.
Besides,

lim
S→0

∂E

∂S
= −∞,

∂E

∂S
(N, 1) = − 1

N
,

Thus, the slope rises from −∞ to −1/N as S increases from 0 to 1, which
means that the absolute value of slope of E decreases from +∞ to 1/N .
Therefore,the absolute value of slope of E is a monotone decreasing function
of S.

(3) It is obvious.
(4) It is obvious.
It could be learned from theorem 1.(1) that epistemic uncertainty decreas-

es as technology readiness score becomes higher, which could be seen in Fig.3.
Since technology readiness score increases when quality of TRL conditions
improve, the higher technology readiness score reflects the better capability
of knowledge on the technology. Therefore, it is reasonable that epistemic
uncertainty is a monotone decreasing function of technology readiness score.
Besides, epistemic uncertainty falls more sharply at the initial levels than
that at the senior levels. An explanation for this is the designated conditions
of the initial levels are easier to achieve than those of the senior levels. On
the other hand, the tolerance to epistemic uncertainty at the initial levels is
higher than that at the senior levels.
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Figure 3: Epistemic uncertainty quantification model with N ∈ {1, 2, · · · , 9}

It could be learned from theorem 1.(2) that the absolute value of slope
of e reduces with S. Since high technology readiness score requires excellent
quality of each TRL condition. Therefore, it is a reasonable explanation
that the absolute value of slope of epistemic uncertainty is decreasing as the
difficulty of getting the increment of S is increasing.

It should also be noted that when technology readiness score S goes to
zero, epistemic uncertainty goes to infinite. This is because we almost know
nothing about the current technology when S is close to zero. Therefore, epis-
temic uncertainty is regarded to be infinite. Besides, epistemic uncertainty
goes to zero when technology readiness score achieves one. An reasonable as-
sumption is that the epistemic uncertainty disappears when every condition
is impossible to do better.
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Figure 4: Absolute value of slope of E is reducing with S. with N ∈ {1, 2, · · · , 9}

5. Case Study

In this section, we apply the developed method to quantify epistemic
uncertainty of a quad redundant servo system. The quad redundant servo
system mainly includes three parts, i.e., main control unit, power drive unit
and sensor unit. Each group of the three units constitutes one channel of
servo system as shown in Fig.5.

The definitions of TRLs for the quad redundant servo system is based
on GJB 7688-2012 [25] and specific conditions are tailored considering the
practical scenarios. The quad redundant servo system has been evaluated at
TRL 6 and technology readiness conditions are shown in Table 3.

As shown in the Table 3, there are three types of technology readiness
conditions, including 10 technology conditions, 5 manufacture conditions and
5 management conditions.

Five experienced experts involved in the evaluation of quality of technol-
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Table 3: Specific conditions of TRL 6

No. Type Contents

1 Technology Find out final operational environment.

2 Technology
Complete simulation tests on performance of ex-
pected system in operational environment.

3 Technology Complete the acceptance test.
4 Technology Complete the field test on the prototype.

5 Technology
Integration of prototype approaches the require-
ment of final system.

6 Technology Certificate the project feasibility of technology.

7 Technology
Analyze effects of the differences between the text
environment and operational environment.

8 Technology Complete most of the design drafts
9 Technology Complete the final copy of technology report.
10 Technology Propose a patent application
11 Manufacture Determine the degree of quality and reliability.

12 Manufacture
Collect actual data on reliability, maintainability
and supportability.

13 Manufacture
Determine the investment on manufacturing pro-
cess and equipment.

14 Manufacture
Roughly determine the specification on critical
manufactory process.

15 Manufacture
Complete demonstrate experiments of the produc-
tion.

16 Management Propose the target of expense control.

17 Management
Propose the plan of system engineering manage-
ment.

18 Management Determine the milestones of the project.
19 Management Draft the production plans.
20 Management Determine the formal requirements documents.
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Figure 5: Quad redundant servo system

ogy readiness condition and the results are shown in Table 4. Expert weights
are calculated by Eq.(3) and Eq.(4) with ε = 0.01 and λE = 0.15 and the re-
sults are shown in Table 5. Then Qij could be obtained by the above results.
Weights of relative contributions ωij are dertemined by Eq(5) with λL = 0.75
based on Qij. The value of Qij and ωij are also displayed in Table 5. The
quality of technology conditions Q1, quality of manufacture conditions Q2

and quality of management conditions Q3 could be acquired based on Qij

and ωij. Then we have Q1 = 0.60, Q2 = 0.52, Q3 = 0.62.
The pairwise comparison matrix A3×3 is given as follows:

A =

⎛⎝ 1 5 3
1/5 1 1/2
1/3 3 1

⎞⎠ . (9)
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Then we have λmax = 3, CI = 0 and CR = 0 which satisfies CR < 0.10.
The eigenvector of λmax is (ω∗

1, ω
∗
2, ω

∗
3) = (0.93, 0.17, 0.33). Therefore, we

have (ω1, ω2, ω3) = (0.65, 0.12, 0.23). Finally, the technology readiness score
is 0.60 and epistemic uncertainty E is 0.19 by Eq.(8) with N = 6.

Table 4: Expert scores

No. Expert 1 Expert 2 Expert 3 Expert 4 Expert 5
1 0.6 0.6 0.9 0.5 0.4
2 0.8 0.5 0.7 0.8 0.6
3 0.2 0.6 0.5 0.5 0.8
4 0.4 0.6 0.4 0.3 0.8
5 0.7 0.4 0.8 0.6 0.6
6 0.7 0.3 0.9 0.9 0.8
7 0.2 0.6 0.5 0.8 0.1
8 0.2 0.6 0.8 0.7 0.6
9 0.9 0.8 0.7 0.5 0.9
10 0.3 0.8 0.4 0.3 0.2
11 0.5 0.9 0.4 0.8 0.1
12 0.5 0.5 0.3 0.4 0.2
13 0.4 0.7 0.8 0.4 0.9
14 0.4 0.3 0.1 0.5 0.3
15 0.6 0.2 0.8 0.8 0.6
16 0.9 0.7 0.9 0.5 0.7
17 0.6 0.7 0.6 0.8 0.8
18 0.3 0.9 0.5 0.6 0.6
19 0.7 0.9 0.1 0.8 0.5
20 0.5 0.3 0.5 0.5 0.6

6. Conclusions

In this paper, we proposed a model to quantify epistemic uncertainty
based on TRLs. A general evaluating framework of TRLs was developed
by summarizing previous literature. The framework was composed of three
main steps, classification and definition of TRLs, determination of technolo-
gy readiness conditions of each TRL and judgment of current TRL N . The
output of this process was current TRL of candidate technology along with
technology readiness conditions of this level. A method was then proposed to

2



Table 5: Expert weights and quality of technology condition

k = 1 2 3 4 5
w11k 0.47 0.47 0.00 0.05 0.00 Q11 0.59 w11 0.10
w12k 0.10 0.01 0.63 0.10 0.16 Q12 0.70 w12 0.11
w13k 0.00 0.11 0.44 0.44 0.00 Q13 0.51 w13 0.09
w14k 0.32 0.32 0.32 0.02 0.01 Q14 0.46 w14 0.09
w15k 0.11 0.00 0.00 0.44 0.44 Q15 0.61 w15 0.10
w16k 0.78 0.00 0.01 0.01 0.20 Q16 0.72 w16 0.11
w17k 0.02 0.03 0.91 0.02 0.02 Q17 0.50 w17 0.09
w18k 0.00 0.46 0.00 0.08 0.46 Q18 0.61 w18 0.10
w19k 0.13 0.44 0.30 0.01 0.13 Q19 0.80 w19 0.12
w110k 0.08 0.00 0.83 0.08 0.00 Q110 0.38 w110 0.08
w21k 0.76 0.01 0.22 0.01 0.01 Q21 0.49 w21 0.20
w22k 0.10 0.10 0.16 0.63 0.01 Q22 0.40 w22 0.18
w23k 0.02 0.90 0.03 0.02 0.02 Q23 0.69 w23 0.24
w24k 0.11 0.44 0.00 0.00 0.44 Q24 0.31 w24 0.16
w25k 0.50 0.00 0.00 0.00 0.50 Q25 0.60 w25 0.22
w31k 0.01 0.48 0.01 0.01 0.48 Q31 0.70 w31 0.22
w32k 0.07 0.71 0.07 0.07 0.07 Q32 0.69 w32 0.21
w33k 0.00 0.00 0.11 0.44 0.44 Q33 0.58 w33 0.19
w34k 0.48 0.02 0.01 0.02 0.48 Q34 0.61 w34 0.20
w35k 0.31 0.00 0.31 0.31 0.05 Q35 0.50 w35 0.18

2



quantify technology readiness based on the output of the evaluating frame-
work. Quality of technology readiness condition was first defined to measure
the performance of technology readiness condition. Then technology readi-
ness score was calculated by quality of technology readiness condition in
conjunction with weights of experts, weights of relative contributions and
weights of relative importance. Epistemic uncertainty quantification model
was then developed as a function to describe the relationship of epistemic
uncertainty, current TRL N and technology readiness condition. Four the-
orems were discussed to illustrate the properties of epistemic uncertainty
quantification model. A case study was applied to demonstrate the proposed
model.

Compared to the existing method, epistemic uncertainty quantification
model by TRLs expands the approaches to evaluate the impact of epistemic
uncertainty in belief reliability. However, current model only considers the
effect of a single unit. Further study will investigate the effect of system
readiness level on epistemic uncertainties.
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Modeling Accelerated Degradation Data Based on
the Uncertain Process

Xiao-Yang Li, Ji-Peng Wu, Le Liu, Mei-Lin Wen, and Rui Kang

Abstract—Accelerated degradation testing (ADT) aids the
reliability and lifetime evaluations for highly reliable products. In
engineering applications, the number of test items are generally
small due to finance or testing resources constraints, which leads
to the rare knowledge to evaluate reliability and lifetime. Con-
sequently, the epistemic uncertainty is embedded in ADT data
and the large-sample based probability theory is not appropriate
any more. To solve this problem, in this paper, we introduce
the uncertainty theory, which is a theory different from the
probability theory, to account for such uncertainty due to small
samples and build up a framework of ADT modeling. In this
framework, an uncertain accelerated degradation model (UADM)
is firstly proposed based on the arithmetic Liu process. Then,
the uncertain statistics for parameter estimations is presented
correspondingly, which is completely constructed on objectively
observed ADT data. An application case and a simulation case
are used to illustrate the proposed methodology. With further
comparisons with the Wiener process based accelerated degra-
dation model (WADM) and the Bayesian-WADM (B-WADM), the
sensitivities of these models to sample sizes are explored, and the
results show that the proposed methodology is superior to the
other two probability-based models under the small sample size.

Index Terms—Accelerated degradation testing, epistemic un-
certainty, uncertainty theory, uncertain process, belief reliability

I. INTRODUCTION

PRODUCT reliability contributes to quality and competi-

tiveness to commercial enterprises. Hence, sufficient ef-

forts have been devoted to the evaluation of product reliability

and lifetime before releasing them to the market. For highly

reliable and long lifespan products, like lithium-ion cells with

the lifetime of several years, the corresponding reliability

tests are rather time-consuming and inefficient. Thus, accel-

erated degradation testing (ADT) has been introduced [1]–

[3]. Through more severe test conditions, the degradation

process for products will be accelerated to obtain performance

characteristics under limited time and financial constraints.

In general, there are mainly two kinds of models used

for ADT modeling based on probability theory, which are

degradation-path models [4] and stochastic process models

[5], e.g. Wiener process [6], [7], Gamma process [8], inverse
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Gaussian process [9]. According to the law of large numbers,

these probability theory based models are suitable for the

situations where there are a large amount of samples so

that the estimated probability distribution function is close

enough to the long-run cumulative frequency to present the

inherent aleatory uncertainty. However, in real engineering

applications, there are usually only a few samples used in ADT

because the tested samples are generally expensive and the

corresponding testing resources are limited. Thus, only partial

information can be obtained after the tests, which causes a

lack of knowledge on recognizing the population and then

leads to the epistemic uncertainty on conducting reliability

evaluations. In such situations, the probability theory based

models are not appropriated because only a few samples are

available and the law of large numbers is no longer valid. For

example, if the ADT data obtained from the small number

of test samples lie in the statistical mean of the population,

the reliability evaluation results will be acceptable. However, if

the ADT data deviate from the mean value and even locates at

the tail of the population, which is the most possibly occurred

situation, the reliability evaluation results will be significantly

conservative or radical. Therefore, when constructing a model

for the ADT data, it is necessary to consider the epistemic

uncertainty caused by small samples.

To quantify the epistemic uncertainty due to small samples,

subjective information such as the belief degrees are usually

considered to combine with the probability theory, namely

imprecise probability method [10]. Bayesian method [11], in-

terval analysis [12] and fuzzy probability theory [10], [13] are

the three most commonly used imprecise probability methods.

In Bayesian method, subjective information are treated as

subjective probability by assigning priors to the parameters, so

the epistemic uncertainty could be quantified. For instance, to

quantify the epistemic uncertainty, Peng et al. [14] proposed

a Bayesian analysis method for degradation modeling with

the inverse Gaussian process; then, they [15] put forward a

general Bayesian method to model the degradation process

with time-varying degradation rates, in which the priors can

be non-informative or informative. Both the simulation and

case study results of the two papers show that the different

priors exert a significant effect on the final evaluation results.

As for the interval analysis and fuzzy probability theory, they

quantify the epistemic uncertainty by assigning intervals or

fuzzy variables with membership functions to the parameters,

respectively. Details about the methodologies in this topic can

be referred to [16]–[20].

Although the field of ADT modeling has been well de-

veloped for decades, there are still some problems in the
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existing ADT models. First of all, most of the existing ADT

models are the probability theory based models. They are

unappropriated for the situation where there exists epistemic

uncertainty due to small samples, because small samples

make the estimated probability distribution function not close

enough to the long-run cumulative frequency and could lead

to unacceptable evaluation results. Secondly, although there

are many imprecise probability methods, there remains some

problems. On the one hand, these methods still need to

combine with the probability theory. On the other hand,

these methods quantify the epistemic uncertainty by subjective

measures. For instance, in Bayesian theory, the information

used for estimating posteriors originate from two parts: priors

and testing information. Because of the small samples in ADT,

the testing information are quite limited, which makes the

posteriors highly depend on the priors. However, these priors

are usually directly predetermined by engineers in real appli-

cations. Different engineers will contribute different subjective

opinions, which make great impacts to the priors. Similar

problem occurs to interval analysis and fuzzy probability

theory. Thirdly, if there are several model parameters described

by priors, intervals or fuzzy variables, the obtained reliability

and lifetime evaluation intervals might be too broad to provide

sufficient support for decision-making. In addition, using these

imprecise probability methods might lead to a huge amount

of computation. For instance, in the Bayesian theory, the

complex priors make it difficult to get an explicit expression of

the reliability function. So simulation approaches are usually

adopted to obtain the approximations, which will lead to a

large amount of calculation. The interval analysis and fuzzy

probability theory have the similar situations.

When the sample size is very small and the probability

theory is not appropriate anymore, the uncertainty theory

utilizes belief degrees to describe the chance that an event

occurs [21]. Thus, we introduce the uncertainty theory to

the field of ADT modeling to address the aforementioned

problems. The uncertainty theory was proposed by Liu [22]

and has been introduced to fields like reliability analysis [23]–

[25], risk analysis [26], supply chain [27], etc. To describe

the dynamic uncertain event, Liu [28] proposed an uncer-

tain process (also known as the Liu process), which is a

sequence of uncertain variables indexed by time, presented

the uncertainty distribution to describe uncertain process [29],

and provided the extreme value theorem and the uncertainty

distribution of the first hitting time (FHT) for independent

increment uncertain process [30].

In this paper, the uncertainty theory is used to quantify the

epistemic uncertainty caused by the small sample problem in

ADT data. Considering the dynamic phenomena of degrada-

tion process, the uncertain process is utilized to describe the

deterioration of products and construct an uncertain acceler-

ated degradation model. Based on the proposed model, this

paper also derives the implicit expression of the reliability

and lifetime distributions, and proposes the uncertain statistics

method for parameter estimations, in which the epistemic

uncertainty is quantified by objective measures. The rest of

this paper is organized as follows. Section II gives some

preliminaries about the uncertainty theory. Section III presents

the methodology of uncertain accelerated degradation model-

ing with the uncertainty distribution of the first hitting time

(FHT) and corresponding uncertain statistics method. Section

IV conducts the case study and the sensitivity analysis. Section

V concludes the paper.

II. UNCERTAINTY THEORY

Let Γ be a nonempty set and L be a σ - algebra over Γ.

( Γ,L) presents a measurable space. Each element Λ in L is

a measurable set. A set function M from L to [0, 1] is called

an uncertain measure if it satisfies the normality axiom, the

duality axiom, the subadditivity axiom [22], and the product

measure axiom [31].

Definition 1. [22] An uncertain variable is a function ξ from
an uncertainty space (Γ,L,M) to the set of real numbers such
that {ξ ∈ B} is an event for any Borel Set B of real numbers,
i.e.

{ξ ∈ B} = {γ ∈ Γ|ξ(γ) ∈ B}. (1)

Definition 2. [22] The uncertainty distribution Φ of an uncer-
tain variable ξ is defined by

Φ(x) = M{ξ ≤ x}. (2)

for any real number x.

For a regular uncertainty distribution Φ(x), the inverse

function Φ−1(α) is called the inverse uncertainty distribution

of ξ, if and only if {ξ ≤ Φ−1(α)} = α for all α ∈ [0, 1].

Definition 3. [28] Let (Γ,L,M) be an uncertainty space and
let T be a totally ordered set (e.g. time). An uncertain process
is a function Xt(γ) from T × (Γ,L,M) to the set of real
numbers such that {Xt ∈ B} is an event for any Borel set B
of real numbers at each time t.

Definition 4. [29] An uncertain process Xt is said to have an
uncertainty distribution Φt(x) if at each time t, the uncertain
variable Xt has the uncertainty distribution Φt(x).

Theorem 1. [29] (Sufficient and Necessary Condition) A
function Φ−1

t (α) : T × (0, 1) −→ R is an inverse uncertainty
distribution of independent increment process if and only if (i)
at each time t, Φ−1

t (α) is a continuous and strictly increasing
function; and (ii) for any times t2 < t1,Φ

−1
t1 (α)− Φ−1

t2 (α) is
a monotone increasing function with respect to α.

III. METHODOLOGY

A. Uncertain Accelerated Degradation Model

As mentioned previously, the stochastic process models

which are suitable for the situations with a large amount of

samples are not appropriate for the ADT with only few test

items. In addition, from the physical point of view, the degra-

dation can be treated as the accumulation of a large number

of small external effects. Therefore, as one of the widely used

stochastic processes, the wiener process is commonly applied

to model the degradation process [5], [6], [32]. However, in

the wiener process, almost all sample paths are continuous

but non-Lipchitz functions [33], which are not appropriate for

practical applications. Since almost all sample paths of Liu
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process from the uncertainty theory are Lipchitz continuous

functions [33], it can be a better option for modeling the

degradation process in these practical applications, especially

under the circumstance of small samples.
To present the degradation process under small samples,

the uncertain differential equation is introduced to describe

the cumulative damage as [28]

dX(t) = f (t,X(t)) dt+ g (t,X(t)) dC(t), (3)

where, f and g are two functions, C(t) is a canonical

Liu process with stationary independent increments satisfying

normal uncertainty distribution (Nu) as C(t) ∼ Nu(0, t) [31].
Without loss of generality, we consider a simple uncertain

process X(t) named arithmetic Liu process through setting

f(t,X(t)) = e and g(t,X(t)) = σ. Then, the solution of

equation (3) with zero initial value is

X(t) = e · t+ σC(t), (4)

where e and σ are the drift and diffusion respectively. X(t)
follows the normal uncertainty distribution with mean et and

variance σ2t2. We further consider nonlinear cases through

the time-scale transformation of τ(t), which is a monotonous

increasing function of time t [6], [32]. Then the uncertain

process X(t) in equation (4) can be transformed into,

X(t) = e(s) · τ(t) + σC(τ(t)), (5)

where C(τ(t)) is an uncertain process satisfying normal

uncertainty distribution as C(τ(t)) ∼ Nu(0, τ(t)). Hence,

X(t) is an uncertain variable at each time t with the normal

uncertainty distribution

Φt (x) =

(
1 + exp

(
π (e(s) · τ(t)− x)√

3στ(t)

))−1

. (6)

e(s) in equation (5) is also known as the degradation rate,

which is related to the stress levels. The relationship between

the normalized accelerated stress s and the degradation rate

e(s) is called the acceleration model [34], i.e.

e(s) = exp (α0 + α1s) , (7)

where, α0 and α1 are constant unknown parameters. Without

the loss of generality, the ith normalized accelerated stress

level si is expressed as follows [35], [36]

si =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1/s′0 − 1/s′i
1/s′0 − 1/s′H

Arrhenius model,

ln s′i − ln s′0
ln s′H − ln s′0

Power model,

s′i − s′0
s′H − s′0

Exponential model,

(8)

where, s′i is the ith accelerated stress level, s′0 and s′H are the

normal and highest stress levels. For simplicity, the proposed

uncertain accelerated degradation model in equations (5), (7),

and (8) is denoted by UADM.
Different choice of acceleration models can be made ac-

cording to the type of the accelerated stress. For example, if

the accelerated stress is temperature, the Arrhenius model is

chosen as the acceleration model; if the accelerated stress is

electrical stress, the Power model is chosen as the acceleration

model [1], [4], [5].

B. Reliability and lifetime distribution of the proposed UADM

Let ω be the failure threshold for the degradation process.

Generally, the lifetime of T the degradation process X(t)
is defined as the first time when X(t) exceeds the pre-

given failure threshold ω, i.e. the first hitting time (FHT). Its

uncertainty distribution [30] is expressed as follows,

Υ(z) = M{tω ≤ z} = M
{

sup
0≤t≤z

X(t) ≥ ω

}
, (9)

where, M{·} is the uncertain measure. In addition, the time-

scale transformation τ(t) is assumed as τ(t) = tβ , β > 0,

which is a monotonous increasing function of time t [6]. If

β = 1, then X(t) is a linear degradation process, if not, then

X(t) is a nonlinear degradation process.

To derive the analytic results of equation (9), we first need to

prove that X(t) is an independent increment uncertain process.

Proof
1) Following Theorem 1, the inverse uncertainty distribu-

tion of X(t) can be computed as

Φ−1
t (α) = e(s) · t β +

σt β
√
3

π
ln

α

1− α
, (10)

which is a continuous and strictly increasing function with

respect to α at each time t.
2) For any times 0 < t2 < t1,Φ

−1
t1 (α)− Φ−1

t2 (α) is

Φ−1
t1 (α)− Φ−1

t2 (α) =

e(s)(t1
β − t2

β) +
σ
√
3

π
(t1

β − t2
β) ln

α

1− α
.

(11)

Assume that F (α) = Φ−1
t1 (α)−Φ−1

t2 (α), then its derivative

F ′(α) is

F ′ (α) =
σ
√
3

π
(t1

β − t2
β)

1

α(1− α)
. (12)

Since that τ(t) = t β is a monotonous increasing function

of time t, we can get (t1
β − t2

β) > 0. Therefore, it is easy

to prove that F ′(α) > 0 for any α ∈ (0, 1), in other word,

Φ−1
t1 (α) − Φ−1

t2 (α) is a monotone increasing function with

respect to α. According to Theorem 1, X(t) is an independent

increment uncertain process.

Following the extreme value theorem [30], equation (9) is

referred to ,

Υ(z) = 1− inf
0≤t≤z

(
1 + exp

(
π
(
e(s) · tβ − ω

)
√
3σtβ

))−1

. (13)

It is known that τ(t) = t β is a monotonous increasing

function of time t. Thus, equation (13) is

Υ(z) =

(
1 + exp

(
π
(
ω − e(s) · zβ)√

3σzβ

))−1

. (14)

Zeng et al. [23] defined a new reliability index based on the

uncertainty theory, i.e. belief reliability RB . RB represents the

belief degree (not frequency) that a component or system will

perform a required function at the specific time t under stated
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operating conditions. In this paper, the uncertainty distribution

of RB can be expressed as follows,

RB (t) = 1−M{tω ≤ t}
= 1−Υ(t)

=

(
1 + exp

(
π
(
e(s) · tβ − ω

)
√
3σtβ

))−1

.

(15)

Meanwhile, the Belief Reliable Life BL(α) [23] is defined

as the supremum lifetime given that RB(t) is larger than the

belief value α ∈ [0, 1], i.e.

BL (α) = sup {t|RB (z) ≥ α} . (16)

Remark 1: RB presents the reliability evaluations under

small samples with the belief degree through uncertainty the-

ory, but not under large samples with the probability through

probability theory.

Remark 2: According to the maximum uncertainty prin-

ciple [22], BL(0.5) is regarded as the lifetime with the

maximum uncertainty.

Remark 3: Belief degree represents the strength with which

we believe the event will happen. If we completely believe the

event will happen, then the belief degree is 1 (complete belief).

If we think it is completely impossible, then the belief degree

is 0 (complete disbelief). The higher the belief degree is, the

more strongly we believe the event will happen [22].

C. Uncertain Statistic for Parameter Estimations

Based on the loading profiles, there are several different

types of ADT plans, including the constant stress acceler-

ated degradation testing (CSADT), the step-stress accelerat-

ed degradation testing (SSADT), and the progressive stress

accelerated degradation testing (PSADT). Since CSADT is

the fundamental kinds of ADT, and its parameter estimation

methods and reliability evaluation results can be extended

to SSADT or PSADT, we only build up the methodology

for CSADT scenario in this paper. Let xijk be the kth

degradation value of unit j under the ith stress level and tijk
be the corresponding measurement time, i = 1, 2, . . . ,K; j =
1, 2, . . . , ni; k = 1, 2, . . . ,mij , where K is the number of

stress levels, ni is the number of test samples under the ith

stress level and mij is the number of measurements for unit

j under the ith stress level.

In [22], Liu proposed the uncertain statistics method to

determine the uncertainty distribution of uncertain variables

with belief degrees, which is named as the principle of least

squares. It can estimate unknown parameters by minimizing

the sum of the squares of the distance between the obtained

belief degrees and the assumed uncertainty distribution. Since

the uncertain process is a sequence of uncertain variables

indexed by time, its unknown parameters can also be estimated

by the principle of least squares. In addition, different from

the belief degrees obtained by subjective measure in [22], the

belief degrees are obtained by objective measures in this paper

based on the objectively observed degradation data.

Given from equation (6), the degradation variable xik =
(xi1k, xi2k, . . . , xijk, . . .) under the ith stress level at the kth

monitor time is an uncertain variable following the normal

uncertainty distribution. Each clement of the uncertain variable

xik has a belief degree αijk. The procedure to estimate

unknown parameters of the proposed UADM is as follows:

Step 1: construct belief degrees for the uncertain variables

xik at the kth monitor time under the ith stress level based

on the observed ADT data.

1) Sort the elements of xik = (xi1k, xi2k, . . . , xijk, . . .) in

ascending order. Define Nik be the number of elements

in xik (the upper bound is ni).

2) Record the belief degrees αijk of the uncertain vari-

able xik. In classical mathematical statistics, empirical

distribution function method is used as a methodology

for constructing distribution for data. When the data are

scarce due to the small samples, some modification equa-

tions can be treated as suggestions for providing belief

degrees on each datum. For instance, the approximate

median rank can assign them with equally intervals, i.e.

αijk = ( j − 0.3)/(Nik + 0.4), j = 1, 2, . . . , Nik. If only

one sample is tested at each stress level during ADT, i.e.

ni = Nik = 1, then αijk = 0.5, which is in accordance

with the maximum uncertainty principle.

Step 2: Compute the objective function Q of the distance

between the obtained belief degrees and the assumed uncer-

tainty distribution from equation (6).

Q = min
θ

K∑
i=1

mij∑
k=1

Nik∑
j=1

(Φ (xijk)− αijk)
2

(17)

Step 3: Estimate the unknown parameter set θ =
(α0, α1, σ, β ) through minimizing Q.

IV. CASE STUDY

In this section, the stress relaxation ADT data for electrical

connector due to the excessive stress loss [36], [37] and

a simulation case are both used to illustrate the proposed

methodology. Discussions are given to explore the sensitivity

of the proposed methodology to the sample sizes and verify

its validity under different sample sizes.

A. The Stress Relaxation ADT Case

1) CSADT Settings : The stress relaxation case is first

introduced by Yang [37], and the ADT data are provided by

Ye et al [36]. Details about the case are given in Table I and

the observed data are shown in Fig.1.

TABLE I
BASIC INFORMATION OF THE STRESS RELAXATION CASE

Content Values
Accelerated stress levels ( Temperature/ ◦C ) 65, 85, 100

Normal stress level ( ◦C ) 40

Sample size under each stress level 6, 6, 6

Failure threshold ( %) 30
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Fig. 1. The degradation paths of the stress relaxation case

2) Reliability and Lifetime Evaluations : It can be noticed

that there are only six test connectors under each accelerated

stress level in the stress relaxation case; therefore, it is a typical

small sample problem and the ADT data contains the epistemic

uncertainty. So the methodology proposed in Section III is

suitable for the ADT modeling and reliability and lifetime

evaluations of this case.

Given from Fig.1, the degradation processes experience

nonlinear patterns. Hence, a time-scale transformation as

τ(t) = tβ is used [36], [38], which is a monotonous increas-

ing function of time t. In addition, the Arrhenius model is

chosen as the acceleration model in equation (8), because the

accelerated stress is temperature [34].

Unknown parameters of the proposed UADM in Section

III-A are estimated through the principle of least squares in

Section III-C with the stress relaxation ADT data. Results are

listed in Table II.

TABLE II
PARAMETER ESTIMATIONS OF THE UADM (STRESS RELAXATION CASE)

Parameters α0 α1 σ β Q

Values −2.0251 1.8626 0.1195 0.4496 2.8342
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Fig. 2. Belief reliability and belief reliable life evaluations (stress relaxation
case)

Then, substituting the estimated parameters into to equations

(15) and (16), the belief reliability RB and belief reliable life

BL(α) at the use conditions can be evaluated, as shown in

Fig.2 (a) and (b). Given from Fig.2 (a), if RB = 0.9 is that of

interest for decision-making, the corresponding belief reliable

life BL(0.9) = 33,633 (Hours), which means that products are

expected to survived at the use conditions after 33,633 hours

with the belief of 0.9. If RB = 0.5, then the corresponding

belief reliable life BL(0.5) = 174,646 (Hours), which means

that it has the maximum uncertainty that products could be

survived after 174,646 hours at the use conditions.

3) Discussions : In engineering applications, decision mak-

ers prefer to choose more stable and less sensitive reliability

evaluation results. In this section, the stress relaxation case is

applied to explore the sensitivity of the proposed methodology

to the sample sizes.

Models used for comparisons
For comparison, six different models are applied to explore

their sensitivities to the sample sizes, including the UADM

proposed in this paper, the Wiener process based accelerated

degradation model (WADM) [6], and the Bayesian-Wiener

process based accelerated degradation model (B-WADM) [38]

with 4 different choices for parameters’ priors.

The WADM is built up on the probability theory. In this

model, the degradation process can be modeled as follows:

X(t) = e(s) · τ(t) + σB(τ(t)), τ(t) = tβ , β > 0 (18)

where e and σ are called the drift and diffusion parameters.

B(τ(t)) is a nonlinear stochastic process satisfying the normal

probability distribution (Np) as B(τ(t)) ∼ Np(0, τ(t)). τ(t)
is the same as equation (5), and e(s) is the same as equation

(7).

Based on the WADM, the B-WADM furtherly utilized

the Bayesian method to present the epistemic uncertainty by

assigning priors to the unknown parameters. Details about

these models are shown in Table III.

TABLE III
MODELS FOR COMPARISONS (STRESS RELAXATION CASE)

Model Parameter estimations
Priors

Mean Variance

UADM
Principle of least

squares
N/A N/A

WADM
Maximum likelihood

estimation method
N/A N/A

B-WADM 1

Bayesian method(a)

100%μ
(b)
p σ2

p
(c)

B-WADM 2 50%μp σ2
p

B-WADM 3 200%μp σ2
p

B-WADM 4 150%μp σ2
p

Remark (a): In Bayesian method, the priors of α0, α1, and β are assumed
to follow normal probability distributions, and the prior of σ is assumed to
follow a gamma probability distribution.

Remark (b): μp refers to the maximum likelihood estimates of unknown
parameter (See Table I in [38]). In addition, since the unknown parameter
β represents the power exponent of the time-varying transformation, it will
not have significant difference in different models. Thus, it is not appropriate
to change the mean of the priors of β in B-WADM 1 ∼ 4 in Table III by
percent just like other unknown parameters.
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Remark (c): According to [38], in the stress relaxation case, the variance

of the priors, i.e. σ2
p , are set to be 0.01.

To simulate the situations under different sample sizes (from

2 to 6), we labelled the samples at each stress level in Fig.1

from 1 to 6, and then randomly select n (n=2, 3, 4, 5, 6)

samples. Therefore, under each sample size (from 2 to 6),

there are Cn
6 combinations of samples. For instance, if n =

2, there are C2
6=15 combinations of samples, which are 1&2,

1&3, . . . ,3&4, . . . , 5&6. ”1&2” means that the ADT data of

samples labeled 1 and 2 under each stress level are chosen for

the reliability evaluations using the models in Table III.

Parameter estimations
Before applying these models to evaluate the reliability, we

need to estimate the unknown parameters first. For each model,

since there are a total of (C2
6 + C3

6 + C4
6 + C5

6 + C6
6=47)

combinations of samples, we can get a total of 47 different

groups of parameter estimation results correspondingly. For

simplicity and without of generality, we calculate the average

of the parameter estimation results for the UADM and the

WADM, and the average of the posterior means for the B-

WADM 1 ∼ 4. Then we take these averages as the final pa-

rameter estimation results for comparison. Results are shown

as follows in Table IV,

TABLE IV
FINAL PARAMETER ESTIMATION RESULTS (STRESS RELAXATION CASE)

Models Parameters α0 α1 β σ

UADM
Averages of
Estimations

-2.03 1.86 0.46 0.15

WADM
Averages of
Estimations

-2.28 2.01 0.46 0.46

B-WADM 1
Prior Means -2.28 2 0.47 0.45

Averages of
Posterior Means

-2.31 1.98 0.48 0.46

B-WADM 2
Prior Means -1.14 1 0.4 0.23

Averages of
Posterior Means

-1.20 1.05 0.44 0.56

B-WADM 3
Prior Means -4.56 4 0.6 0.91

Averages of
Posterior Means

-4.46 4.05 0.49 0.58

B-WADM 4
Prior Means -3.42 3 0.55 0.68

Averages of
Posterior Means

-3.39 2.98 0.49 0.48

From the results of means of priors and posterior means

for B-WADM 1 ∼ 4 in Table IV, it can be recognized that

the corresponding posterior estimations results are around the

mean of the priors. In the Bayesian theory, the information

used for estimating unknown parameters originates from two

parts: prior information and testing information. Due to the

small sample problem, the testing information provided by the

ADT data are quite limited, which leads to the situation that

the posteriors of the unknown parameters highly depend on

the prior information. Unfortunately, these priors are usually

directly predetermined by engineers in real applications.

In this case, the MLE in Table I in [38] are calculated based

on the testing information of the stress relaxation case. In B-

WADM 2 ∼ 4, the prior information are far away from MLE,

so the posteriors are almost completely determined by the

priors while have no connection with the testing information,

which causes the ADT data to contribute little in the parameter

estimations and reliability evaluations. Since ADT modeling

focuses on using the ADT data to get more reliable reliability

evaluation results, we will only make comparisons on the

reliability evaluation results obtained by UADM, WADM, and

B-WADM 1 in the following sections.

Reliability evaluations
For each model (UADM, WADM, or B-WADM 1) under

the sample size n (n=2 to 6), there are Cn
6 different parameter

estimations that will cause Cn
6 different reliability evaluation

results correspondingly, so there should be the lower and upper

boundaries of reliability evaluation results (when n=6, C6
6=1,

the lower and upper boundaries are the same one), which can

be used to present the variation range of reliability evaluations.

The lower and the upper boundaries of reliability evaluation

results can be calculated as follows:

Lower boundary : RL
n(t) = min{Rl

n(t)},
Upper boundary : RL

n(t) = max{Rl
n(t)}.

(19)

where l = 1, 2, . . . , Cn
6 .

At each monitoring time t under the sample size n, RL
n(t)

represents the minimum reliability evaluations, RU
n (t) repre-

sents the maximum reliability evaluations, and Rl
n(t) repre-

sents the lth reliability evaluations. The results are illustrated

in Fig.3.

0 1 2 3 4 5
x 105

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time / Hour
(a)

B
el

ie
f r

el
ia

bi
lit

y

Lower and upper boundaries of reliability 
 evaluations (UADM)

n=2
n=3
n=4
n=5
n=6

0 1 2 3 4 5
x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time / Hour
(b)

Pr
ob

ab
ili

st
ic

 re
lia

bi
lit

y

Lower and upper boundaries of reliability 
 evaluations (WADM)

n=2
n=3
n=4
n=5
n=6

0 1 2 3 4 5
x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time /  Hours
(c)

Pr
ob

ab
ili

st
ic

 re
lia

bi
lit

y

Lower and upper boundaries of reliability 
 evaluations (B−WADM 1)

n=2
n=3
n=4
n=5
n=6

Fig. 3. Lower and upper boundaries of reliability evaluations (stress
relaxation case)

Given from Fig.3, it can be seen that the belief reliability

evaluations obtained by the UADM, the probabilistic reliability

evaluations obtained by the WADM and the B-WADM 1 are

all changing from the initial value which equals to 1; and then

decrease gradually with the increasing time. For each model,

the distance between the lower and upper reliability boundaries

decrease with the increasing sample size from 2 to 5, which

indicates that providing more information will significantly

decrease the epistemic uncertainty of the reliability evaluation

results. In addition, all reliability curves cover the one of n
= 6. All these analyses agree with the intuitive cognition of

people.

To depict the sensitivities of these models to the sample

sizes more clearly, we calculate the quantile reliable lifetime

for the lower and the upper reliability boundaries for each

model under sample size n, and define an evaluation criteria
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named ”the Range of quantile Reliable Lifetime under spe-

cific reliability (RRL)”. The meaning of this criteria is the

difference between the corresponding time tUn (R) on the upper

boundary curve and the corresponding time tLn(R) on the lower

boundary curve at a specific reliability R under the sample size

n. RRL can be calculated by the following equation:

RRLn(R) = tUn (R)− tLn(R), n = 2, 3, 4, 5;
if n = 6, RRLn(R) = 0.

(20)

Remark: Under the sample size n, the smaller the RRLs
are, the smaller the variation range of the reliability evaluation

is, then, the more stable the reliability evaluation results are.

For instance, at a specific reliability R under the sample

size n=2, the RRL can be calculated as follows in Fig.4.
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Fig. 4. An example for calculating RRL

In practical applications, the reliability from 0.8 to 1 makes

more significance. So we calculate the RRLs of the three

models (UADM, WADM and B-WADM 1) from R=0.8 to

R=0.99 (the interval is 0.001, and the total amount of RRLs
for each model under each sample size is 191). The results

are shown in Fig.5,
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Fig. 5. the RRLs under sample sizes n(n = 2, 3, 4, 5) (stress relaxation
case)

From the results of Fig.5, the followings could be true:

1) When we compare both UADM and B-WADM 1 with

WADM, it can be seen that both the RRLs obtained by

the UADM and the B-WADM 1 are obviously smaller

than the ones obtained by the WADM under small sample

size (from 2 to 5), which indicates that the taking the

epistemic uncertainty into account can get more stable

and less sensitive reliability evaluation results.

2) Furtherly, the results of Fig.5 also present that in most

cases, the RRLs obtained by the proposed UADM are

smaller than the ones obtained by the B-WADM 1 under

small sample sizes (from 2 to 5). More specifically, the

RRLs obtained by the proposed UADM are obviously

smaller than the RRLs obtained by the B-WADM 1

under extreme small sample size (from 2 to 3). When

the sample size increase to 4 and 5, it can be seen from

Fig.5 that under high reliability (R > 0.87), the RRLs
obtained by the proposed UADM are still smaller than

the RRLs obtained by the B-WADM 1.

B. The Simulation Case

For further researches of the sensitivity of the proposed

methodology to sample sizes, in this section, a numerical

simulation case is conducted under a wider range of sample

sizes (from 3 to 20). For comparison, the WADM and B-

WADM 1 ∼ 4 mentioned in Section IV-A3 are also used in

this case.

1) Simulation Settings : Considering that all the informa-

tion of the simulated degradation process are pre-given in

the simulation case, there is no epistemic uncertainty when

generating simulation ADT data. Therefore, the degradation

model in equation (18) is chosen for generating simulation

ADT data. Details about this case are listed as follows in Table

V.

TABLE V
BASIC INFORMATION OF THE SIMULATION CASE

Content Values
Accelerated stress Temperature

Stress levels ( ◦C ) s′0 = 25, s′1 = 50, s′2 = 65, s′3 = 80
Failure Threshold 40

Inspection interval (hours) 1000

Number of measurement 33, 23, 11

Degradation model X(t) = e(s) · tβ + σB(tβ),
Acceleration model e(s) = exp (α0 + α1s)

Model parameters
α0 = −5.441, α1 = 2.716, σ = 0.03,
β = 0.5

Sample size n 3, 4, 5, ..., 20

Number of Simulation l 500

2) Discussions : In this section, all the models used in

Section IV-A3 are applied for further researches of their

sensitivity on the sample sizes, including UADM, WADM,

and B-WADM 1 ∼ 4.

Models used for comparison
Details about these models are shown in Table VI.
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TABLE VI
MODELS FOR COMPARISONS (STRESS RELAXATION CASE)

Model Parameter estimations
Priors

Mean Variance

UADM
Principle of least

squares
N/A N/A

WADM
Maximum likelihood

estimation method
N/A N/A

B-WADM 1

Bayesian method(d)

100%μ
(e)
p σ2

p
(f)

B-WADM 2 50%μp σ2
p

B-WADM 3 200%μp σ2
p

B-WADM 4 150%μp σ2
p

Remark (d): In Bayesian method, the priors of α0, α1, and β are assumed
to follow normal probability distributions, and the prior of σ is assumed to
follow a gamma probability distribution.

Remark (e): μp refers to the setting values of model parameters(See Table
V). Since the unknown parameter β represents the power exponent of the
time-varying transformation, it will not have significant difference in different
models. Thus, it is not appropriate to change the mean of the priors of β in
B-WADM 1 ∼ 4 in Table III by percent just like other unknown parameters.

Remark (f ): or simplicity and calculation, in the simulation case, the

variance of the priors, i.e. σ2
p , are set to be 0.01.

Parameter estimations
First of all, the unknown parameters of these models need to

be estimated. As shown in Table V, we can get a total of 500

different parameter estimation results for each model under

each sample size from 3 to 20. For simplicity and without of

generality, we take the average of the parameter estimation

results for the UADM and the WADM, and the average of the

posterior means for the B-WADM 1 ∼ 4 as the final parameter

estimation results. Results are shown as follows in Table VII,

TABLE VII
FINAL PARAMETER ESTIMATION RESULTS (STRESS RELAXATION CASE)

Models Parameters α0 α1 β σ

UADM
Averages of
Estimations

-5.43 2.71 0.50 0.0039

WADM
Averages of
Estimations

-5.45 2.72 0.5 0.030

B-WADM 1
Prior Means -5.441 2.72 0.5 0.03

Averages of
Posterior Means

-5.43 2.72 0.50 0.030

B-WADM 2
Prior Means -2.72 1.36 0.45 0.015

Averages of
Posterior Means

-4.23 1.98 0.44 0.046

B-WADM 3
Prior Means -10.88 5.43 0.60 0.06

Averages of
Posterior Means

-10.54 5.62 0.46 0.22

B-WADM 4
Prior Means -8.16 4.07 0.55 0.045

Averages of
Posterior Means

-7.53 4.13 0.58 0.026

Similar to the results of Section 4.1.3.2 in Table IV, the

average of posteriors means estimated by B-WADM 2 ∼ 4
are far away from the testing information (the setting values of

model parameters), which means that the ADT data have little

effect on the parameter estimations and reliability evaluations.

So in the following sections, only the reliability evaluation

results obtained by UADM, WADM, and B-WADM 1 are used

for comparison.
Reliability evaluations

According to equation (19) (l = 1, 2, . . . , 500), the lower

and upper boundaries of reliability evaluation results under

sample size n(n = 3, 4, . . . , 20) are calculated and used to

present the variation range of reliability evaluation results for

each model. Results are illustrated in Fig.6 and Fig.7.
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Fig. 6. Lower and upper boundaries of reliability evaluations (simulation
case, n = 3 ∼ 11)
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Fig. 7. Lower and upper boundaries of reliability evaluations (simulation
case, n = 12 ∼ 20)

According to the results of Fig.6 and Fig.7, under sample

size n (from 3 to 20), the reliability evaluations obtained by

UADM, WADM, and B-WADM 1 all starts from the initial

value 1 and then decrease with the increasing time t. For each

model, with the increasing sample size, the distance between

the lower and upper reliability boundaries decreases gradually,

which indicates that the epistemic uncertainty decreases when

more information are provided. All these analyses agree with

the intuitive cognition of people.
To depict the sensitivities of these models to the sample

sizes more clearly, based on equation (20) (n = 3, 4, . . . , 20),
we calculate the he RRLs of the three models (UADM,

WADM and B-WADM 1) from R = 0.8 to R = 0.99 under

each sample size from 3 to 20 (the interval is 0.001, and the

total amount of RRLs for each model under each sample size

is 191).The results are shown as follows in Fig.8.
According to the results of Fig.8., the following conclusions

could be true:
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Fig. 8. the RRLs under sample size n(n = 3 ∼ 20) (simulation case)

1) In this simulation case, under a wide range of sample size

from 3 to 20, the RRLs obtained by the UADM and the

B-WADM 1 are both smaller than the ones obtained by

the WADM. The results show that more stable and less

sensitive reliability evaluations could be obtained if the

epistemic uncertainty is considered.

2) Furtherly, under each sample size from 3 to 20, the RRLs
obtained by the proposed UADM are smaller than the

ones obtained by the B-WADM 1. The results indicates

that although proposed UADM and the B-WADM 1 both

take the epistemic uncertainty into account, the proposed

UADM can obtain more stable and less sensitive reliabil-

ity evaluations than the B-WADM 1.

The analysis results of the stress relaxation case and the

simulation case both show that the reliability evaluation results

obtained by the UADM are more stable and less sensitive than

the ones obtained by the WADM and the B-WADM under the

small sample situation. Consequently, the proposed UADM

will contribute a more concrete and suitable support for

engineers to control the risk and make appropriate decisions,

such as maintenance strategies.

V. CONCLUSIONS

This paper concentrates on dealing with the small sample

problem in ADT data, and draws the following conclusions:

1) The arithmetic Liu process based on the uncertainty

theory is introduced to conduct an uncertain accelerat-

ed degradation model, namely UADM, to capture the

epistemic uncertainty due to small samples in ADT

data. The reliability and lifetime evaluations are derived

correspondingly.

2) The uncertain statistics method for the proposed uncertain

accelerated degradation model is given to estimate the

unknown parameters. In this method, the belief degrees

are obtained by objective measures based on the objec-

tively observed degradation data, rather than by subjective

measures.

3) The results of the practical case show the practicability

of the proposed methodology. The discussion results of

the practical case and the simulation case show that

under small sample sizes, the proposed uncertain accel-

erated degradation model provides more stable and less

sensitive reliability evaluations than the Wiener process

based accelerated degradation model (WADM) and the

Bayesian-Wiener process based accelerated degradation

model (B-WADM). The analysis results indicate that the

proposed model is an appropriate option for the small

sample situation, and will furtherly contribute a more

concrete and suitable support for engineers to control the

risk and make appropriate decisions, such as maintenance

strategies.

Beyond the work of this paper, there are other issues that

may be worthwhile for future researches: this paper is the first

try to introduce the uncertainty theory to the field of ADT

modeling and uses a practical case and a simulation case. In

the future, it is very important to explore the appropriate data

sizes (including the number of measurements and the number

of test items) for the application of the proposed model by

applying to more experimental cases.
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Abstract The objective of this study is to present a
novel method of level-2 uncertainty analysis in risk as-
sessment by means of uncertainty theory. In the pro-

posed method, aleatory uncertainty is characterized by
probability distributions, whose parameters are affect-
ed by epistemic uncertainty. These parameters are de-

scribed as uncertain variables. For monotone risk mod-
els, such as fault trees or event trees, the uncertainty is
propagated analytically based on the operational rules

of uncertain variables. For non-monotone risk models,
we propose a simulation-based method for uncertainty
propagation. Three indexes, i.e., average risk, Value-

at-risk and bounded value-at-risk, are defined for risk-
informed decision making in the level-2 uncertainty set-
ting. Two numerical studies and an application on a re-

al example from literature are worked out to illustrate
the developed method. A comparison is made to some
commonly-used uncertainty analysis methods, e.g., the

ones based on probability theory and evidence theory.

Keywords Uncertainty theory · Uncertainty analysis ·
Epistemic uncertainty

1 Introduction

Uncertainty modeling and analysis is an essential
part of probabilistic risk assessment (PRA) and has
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drawn numerous attentions since 1980s (Apostolakis,
1990; Parry and Winter, 1981). Two types of uncer-
tainty are usually distinguished: aleatory uncertainty,

which refers to the uncertainty inherent in the physical
behavior of a system, and epistemic uncertainty, which
refers to the uncertainty in the modelling caused by

lack of knowledge on the system behavior (Kiureghian
and Ditlevsen, 2009). In practice, uncertainty modeling
and analysis involving both aleatory and epistemic un-

certainty is often formulated in a level-2 setting: aleato-
ry uncertainty is considered by developing probabilistic
models for risk assessment, while the parameters in the

probabilistic models might subject to epistemic uncer-
tainty (Aven et al, 2014).

In general, it has been well acknowledged that aleato-
ry uncertainty should bemodeled using probability the-
ory. However, there appears to be no consensus on which

mathematical framework should be used to describe
epistemic uncertainty, since its modeling usually in-
volves subjective information from human judgements.

Indeed, various mathematical frameworks have been
proposed in the literature to model the epistemically
uncertain variables, e.g., probability theory (subjective

interpretation), evidence theory, possibility theory, etc.
(Aven, 2013; Aven and Zio, 2011; Helton et al, 2010).
As a result, different methods for level-2 uncertainty

analysis are developed. Aven et al (2014) systemati-
cally elaborate on level-2 uncertainty analysis methods
and developed a purely probabilistic for level-2 uncer-

tainty analysis. Limbourg and Rocquigny (2010) apply
evidence theory to both level-1 and level-2 uncertain-
ty modeling and analysis, and the two settings were

compared through a benchmark problem. Some expla-
nations of the results are discussed in the context of
evidence theory. Considering the large calculation cost

for level-2 uncertainty analysis, Limbourg et al (2010)
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develop an accelerated method for monotonous prob-

lems using the Monotonous Reliability Method (MR-
M). Pedroni et al (2013) and Pedroni and Zio (2012)
model the epistemic uncertainty using possibility distri-

butions and develop a level-2 Monte Carlo simulation
for uncertainty analysis, which is then compared to a
purely probabilistic approach and an evidence theory-

based (ETB) approach. Pasanisi et al (2012) reinterpret
the level-2 purely probabilistic frameworks in the light
of Bayesian decision theory and apply the approach to

risk analysis. Hybrid methods based on probability the-
ory and evidence theory are also presented (Aven et al,
2014). Baraldi et al (2013) introduce the hybrid level-

2 uncertainty models to consider maintenance policy
performance assessment.

In this paper, we enrich the research of level-2 un-
certainty analysis by introducing a new mathematical
framework, the uncertainty theory, to model the epis-

temically uncertain variables. Uncertainty theory has
been founded in 2007 by Liu (2007) as an axiomatic
mathematical framework to model subjective belief de-

grees. It is viewed as a reasonable and effective approach
to describe epistemic uncertainty (Kang et al, 2016).
To simulate the evolution of an uncertain phenomenon

with time, concepts of uncertain process (Liu, 2015)
and uncertain random process (Gao and Yao, 2015) are
proposed. The uncertain differential equation is also de-

veloped as an effective tool to model events affected
by epistemic uncertainty (Yang and Yao, 2016). After
these years of development, uncertainty theory has been

applied in various areas, including finance (Chen and
Gao, 2013; Guo and Gao, 2017), decision making un-
der uncertain environment (Wen et al, 2015b,a), game

theory (Yang and Gao, 2013, 2016; Gao et al, 2017;
Yang and Gao, 2014), etc. There are also considerable
real applications in reliability analysis and risk assess-

ment considering epistemic uncertainties. For example,
Zeng et al (2013) propose a new concept of belief relia-
bility based on uncertainty theory accounting for both

aleatory and epistemic uncertainties. Wen et al (2017)
develop an uncertain optimization model of spare parts
inventory for equipment system, where the subjective

belief degree is adopted to compensate the data defi-
ciency. Ke and Yao (2016) apply uncertainty theory to
optimize scheduled replacement time under block re-

placement policy considering human uncertainty. Wen
and Kang (2016) model the reliability of systems with
both random components and uncertain components.

Wang et al (2017) develop a new structural reliability
index based on uncertainty theory.

To the best of our knowledge, in this paper, it is the
first time that uncertainty theory is applied to level-

2 uncertainty analysis. Through comparisons to some

commonly used level-2 uncertainty analysis methods,

new insights are brought with respect to strength and
limitations of the developed method.

The remainder of the paper is structured as follows.
Section 2 recalls some basic concepts of uncertainty the-
ory. Level-2 uncertainty analysismethod is developed in

Section 3, for monotone and non-monotone riskmodels.
Numerical case studies and applications are presented
in Section 4. The paper is concluded in Section 5.

2 Preliminaries

In this section, we briefly review some basic knowl-
edge on uncertainty theory. Uncertainty theory is a new

branch of axiomatic mathematics built on four axiom-
s, i.e., Normality, Duality, Subadditivity and Product
Axioms. Founded by Liu (2007) in 2007 and refined by

Liu (2010) in 2010, uncertainty theory has been widely
applied as a new tool for modeling subjective (especial-
ly human) uncertainties. In uncertainty theory, belief

degrees of events are quantified by defining uncertain
measures:

Definition 1 (Uncertain measure (Liu, 2007)) Let

Γ be a nonempty set, and L be a σ-algebra over Γ . A set
function M is called an uncertain measure if it satisfies
the following three axioms,

Axiom 1 (Normality Axiom) M{Γ} = 1 for the u-
niversal set Γ .

Axiom 2 (Duality Axiom) M{Λ}+M{Λc} = 1 for
any event Λ ∈ L.

Axiom 3 (Subadditivity Axiom) For every count-
able sequence of events Λ1, Λ2, · · · , we have

M

{ ∞⋃
i=1

Λi

}
≤

∞∑
i=1

M {Λi}

Uncertainmeasures of product events are calculated
following the product axiom (Liu, 2009):

Axiom 4 (Product Axiom) Let (Γk,Lk,Mk) be un-
certainty spaces for k = 1, 2, · · · . The product uncertain
measure M is an uncertain measure satisfying

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk {Λk}

where Lk are σ-algebras over Γk, and Λk are arbitrarily

chosen events from Lk for k = 1, 2, · · · , respectively.
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In uncertainty theory, if an uncertain measure of

one event can take multiple reasonable values, a value
as close to 0.5 as possible is assigned to the event so
as to maximize the uncertainty (maximum uncertainty

principle) (Liu, 2009). Hence, the uncertain measure of
an arbitrary event in the product σ-algebra L is calcu-
lated by

M {Λ} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
Λ1×Λ2×···⊂Λ

min
1≤k≤∞

Mk {Λk} ,
if sup

Λ1×Λ2×···⊂Λ
min

1≤k≤∞
Mk {Λk} > 0.5

1− sup
Λ1×Λ2×···⊂Λc

min
1≤k≤∞

Mk {Λk} ,
if sup

Λ1×Λ2×···⊂Λc

min
1≤k≤∞

Mk {Λk} > 0.5

0.5, otherwise.

(1)

Definition 2 (Uncertain variable (Liu, 2007)) An
uncertain variable is a function ξ from an uncertain-

ty space (Λ,L,M) to the set of real numbers such that
{ξ ∈ B} is an event for any Borel set B of real numbers.

Definition 3 (Uncertainty distribution (Liu, 2007))
The uncertainty distribution Φ of an uncertain variable

ξ is defined by Φ(x) = M {ξ ≤ x} for any real number
x.

For example, a linear uncertain variable ξ ∼ L(a, b)
has an uncertainty distribution

Φ1(x) =

⎧⎪⎪⎨⎪⎪⎩
0, if x < a
x− a

b− a
, if a ≤ x ≤ b

1, if x > b

(2)

and a normal uncertain variable ξ ∼ N (e, σ) has an

uncertainty distribution

Φ2(x) =

(
1 + exp

(
π(e− x)√

3σ

))−1

, x ∈ 	 (3)

An uncertainty distribution Φ is said to be regu-
lar if it is a continuous and strictly increasing with re-
spect to x, with 0 < Φ(x) < 1, and lim

x→−∞Φ(x) = 0,

lim
x→+∞Φ(x) = 1. A regular uncertainty distribution has

an inverse function, and this inverse function is de-

fined as the inverse uncertainty distribution, denoted
by Φ−1(α), α ∈ (0, 1). It is clear that linear uncertain
variables and normal uncertain variables are regular,

and their inverse uncertainty distributions are written
as:

Φ−1
1 (α) = (1− α)a+ αb, (4)

Φ−1
2 (α) = e+

σ
√
3

π
ln

α

1− α
. (5)

Inverse uncertainty distributions play a central role
in uncertainty theory, since the uncertainty distribution
of a function of uncertain variables is calculated using

the inverse uncertainty distributions:

Theorem 1 (Operational law (Liu, 2010)) Let ξ1,

ξ2, · · · , ξn be independent uncertain variables with regu-
lar uncertainty distributions Φ1, Φ2, · · · , Φn, respective-
ly. If f(ξ1, ξ2, · · · , ξn) is strictly increasing with respect

to ξ1, ξ2, · · · , ξm and strictly decreasing with respect to
ξm+1, ξm+2, · · · , ξn, then ξ = f(ξ1, ξ2, · · · , ξn) has an
inverse uncertainty distribution

Ψ−1(α) = f
(
Φ−1
1 (α), · · · , Φ−1

m (α), Φ−1
m+1(1− α), Φ−1

n (1− α)
)
.

(6)

Definition 4 (Expected value (Liu, 2007)) Let ξ be
an uncertain variable. Then the expected value of ξ is
defined by

E[ξ] =

∫ +∞

0

M{ξ ≥ x}dx−
∫ 0

−∞
M{ξ ≤ x}dx. (7)

It is clear that, if ξ has an uncertainty distribution
Φ(x), the expected value of ξ can be calculated by (Liu,

2015):

E[ξ] =

∫ +∞

0

(1− Φ (x)) dx−
∫ 0

−∞
Φ(x)dx. (8)

For ξ with a regular uncertainty distribution, the ex-

pected value E [ξ] is given by (Liu, 2015)

E [ξ] =

∫ 1

0

Φ−1(α)dα. (9)

3 Level-2 Uncertainty Analysis Based on
Uncertainty Theory

In this section, a new method for level-2 uncertainty
analysis is presented based on uncertainty theory. Sect.
3.1 formally defines the problem of level-2 uncertain-

ty analysis. Then, the uncertainty analysis method is
introduced for monotone and non-monotone models in
Sect. 3.2 and 3.3, respectively.

3.1 Problem Definition

Conceptually, uncertainty analysis of a risk model
can be represented as:

z = g(x),

p = h (g(x), zth) , (10)
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where z is the safety variable of the system of interest,

x = (x1, x2, · · · , xn) is a vector of input parameters,
p is the risk indicator expressed in probabilistic terms
and calculated by a distance function h(·) between the

value of z and safety threshold zth:

p = Pr {z > zth} or p = Pr {z < zth} . (11)

In practice, g(·) could be logicalmodels, e.g., fault trees,

event trees, Bayesian networks, etc., or physical models
of failure dynamics, e.g., see Baraldi and Zio (2008) and
Ripamonti et al (2013).

Uncertainty in (10) is assumed to come from the

input parameters x, i.e., model uncertainty (e.g., see
Nilsen and Aven (2003)) is not considered in the present
paper. Aleatory and epistemic uncertainty are consid-

ered separately. Depending on the ways the uncertainty
in the model parameters is handled, level-1 and level-2
uncertainty models are distinguished.

Level-1 uncertainty models separate the input vec-

tor into x = (a, e), where a = (x1, x2, · · · , xm) repre-
sents the parameters affected by aleatory uncertainty
while e = (xm+1, xm+2, · · · , xn) represents the param-

eters that are affected by epistemic uncertainty (Lim-
bourg and Rocquigny, 2010). In level-1 uncertaintymod-
els, probability theory is used to model the aleatory

uncertainty in a = (x1, x2, · · · , xm) by identifying their
probability density functions (PDF) f(xi|θi). These PDF-
s are assumed to be known, i.e., the parameters in

the PDFs, denoted by Θ = (θ1, θ2, · · · , θn), are as-
sumed to have precise values. In practice, however, Θ =
(θ1, θ2, · · · , θn), are subject to epistemic uncertainty,

and the corresponding uncertaintymodel is called level-
2 uncertainty model.

In this paper, we consider the generic model in (10)
and develop a new method for level-2 uncertainty anal-

ysis, based on uncertainty theory. More specifically, it
is assumed that:

(1) The aleatory uncertainty in the input parame-

ters are described by the PDFs f(xi|θi), i = 1, 2, · · · , n.
(2) Θ = (θ1, θ2, · · · , θn) are modeled as independen-

t uncertain variables with regular uncertainty distribu-
tions Φ1, Φ2, · · · , Φn.

The uncertainty distributions Φ1, Φ2, · · · , Φn describe

the epistemic uncertainty in the parameter values of
Θ = (θ1, θ2, · · · , θn) and can be determined based on
expert knowledge, using uncertain statistical methods

such as interpolation (Liu, 2015), optimization (Hou,
2014) and the method of moments (Wang and Peng,
2014). The problem, then, becomes: given Φ1, Φ2, · · · , Φn,

how to assess the epistemic uncertainty in the risk index
of interest p. In the following sections, we first develop
the uncertainty analysis method for monotone model-

s in Sect. 3.2, where p is a monotone function of the

parameters Θ, and, then, discuss a more general case

in Sect. 3.3, where there are no requirements on the
monotony of the risk model.

3.2 Monotone Risk Model

3.2.1 Uncertainty Analysis Using Operational Laws

In monotone uncertainty models, the risk index of

interest can be explicitly expressed as:

p = h(Θ), (12)

where Θ = (θ1, θ2, · · · , θn) is the vector of the param-
eters in the PDFs whose values are subject to epis-

temic uncertainty and h is a strictly monotone func-
tion with respect to Θ. According to Assumption (2)
in Section 3.1, the risk index of interest p is also an
uncertain variable. Given regular uncertainty distribu-

tions Φ1, Φ2, · · · , Φn for θ1, θ2, · · · , θn, the epistemic un-
certainty in p can be represented by an uncertainty dis-
tribution Ψ(p). Without loss of generality, we assume h

is strictly increasing with respect to θ1, θ2, · · · , θm, and
strictly decreasing with respect to θm+1, θm+2, · · · , θn.
Then, the inverse uncertainty distribution of p can be

calculated based on Theorem 1, i.e.,

Ψ−1
p (α) = h(Φ−1

1 (α), · · · , Φ−1
m (α),

Φ−1
m+1(1− α), · · · , Φ−1

n (1− α)), 0 ≤ α ≤ 1.
(13)

The uncertainty distribution Ψ(p) can be obtained from

the inverse function Ψ−1
p (α).

Two risk indexes are defined for risk-informed de-
cision making, considering the level-2 uncertainty set-

tings presented.

Definition 5 Let p represent a probabilistic risk index

and Ψ(p) be the uncertainty distribution of p. Then

p̄ =

∫ +∞

0

[1− Ψ(p)] dp (14)

is defined as the average risk, and

VaR(γ) = sup {p|Ψ(p) ≤ γ} (15)

is defined as the value-at-risk.

It should be noted that the average risk can be also
calculated using the inverse distribution of p:

p =

∫ 1

0

Ψ−1(α)dα, (16)

and the value-at-risk can also be calculated by

VaR(γ) = Ψ−1(γ). (17)
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Fig. 1 Simple fault tree for the case study

According to Definition 5, the average risk is the ex-
pected value of the uncertain variable p, which reflects

our average belief degree of the risk index p. A greater
value of the average risk indicates that we believe the
risk is more severe. The physical meaning of value-at-

risk is that, with belief degree γ, we believe that the
value of the risk index is p. It is clear that, for a fixed
value of γ, a greater VaR(γ) means that the risk is more

severe.

3.2.2 Numerical Case Study

We take a simple fault tree (shown in Fig. 1) as a
numerical case study to demonstrate the application of

the developed method. The fault tree represents a top
event A as the union (logic gate OR) of the two basic
events B1 and B2. The risk index of interest is the prob-

ability that event A occurs before time t0, determined
by

p = Pr {tA < t0} , (18)

where tA denotes the occurrence time of A. Let tB1 and
tB2 be the occurrence times of events B1 and B2, re-
spectively. Then, tA = min(tB1, tB2). Assume that tB1

and tB2 follow exponential distributions with parame-
ters λ1 and λ2, respectively. Thus, (5) can be further
expressed as:

p = Pr {tB1 < t0, tB2 < t0}
= pB1 + pB2 − pB1 · pB2

= 1− e−(λ1+λ2)t0

(19)

It is assumed that λ1 and λ2 are subject to epis-

temic uncertainty. The developedmethods in Sect. 3.2.1
are used for level-2 uncertainty analysis based on un-
certainty theory. In accordance with expert experience,

linear uncertainty distributions are used to model the
epistemic uncertainty in λ1 and λ2, i.e., λ1 ∼ L(a1, b1)
and λ2 ∼ L(a2, b2). From (13), the inverse uncertainty

distribution of the risk index p is calculated as

Ψ−1
p (α) = 1−exp [−(1− α)(a1 + a2)t0 − α(b1 + b2)t0] ,

0 ≤ α ≤ 1 (20)

Table 1 Time threshold and distributions for level-2 uncer-
tain parameters

λ1(10−5/h−1) λ2(10−5/h−1) t0 γ

UTB Method L(0.8, 1.2) L(0.5, 0.8)
104h 0.9

PB Method U(0.8, 1.2) U(0.5, 0.8)

and the uncertainty distribution of p is

Ψ(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if p ≤ Ψ−1
p (0)

− 1
t0

ln(1− p)− (a1 + a2)

(b1 + b2)− (a1 + a2)
, if Ψ−1

p (0) ≤ p ≤ Ψ−1
p (1)

1, if p ≥ Ψ−1
p (0).

(21)

According to (16) and (17), p and VaR can be calcu-
lated by

p =

∫ 1

0

Ψ−1(α)dα

=

∫ 1

0

1dα−
∫ 1

0

exp [(a1 + a2 − b1 − b2)t0α− (a1 + a2)t0] dα

= 1− 1

(a1 + a2 − b1 − b2)t0

[
e−(b1+b2)t0 − e−(a1+a2)t0

]
,

(22)

VaR(γ) = Ψ−1
p (γ)

= 1− exp [−(1− γ)(a1 + a2)t0 − γ(b1 + b2)t0] .

(23)

Assuming the parameter values in Table 1, we have
p = 0.1519 and VaR(0.9) = 0.1755. The results are

compared to those from a similar method based on
probability theory, hereafter indicated as probability-
based method (PB), whereby the belief degrees on λ1,

λ2 and p are modeled by random variables. In this pa-
per, we assume that λ1 and λ2 follow uniform distri-
butions whose parameter values are given in Table 1.

Monte Carlo (MC) sampling is used to generate sam-
ples from the probability distribution of p. Average risk
and value-at-risk can, then, be calculated using the MC

samples:

p =
1

n

n∑
i=1

pi, (24)

VaR(γ) = sup {pi|pi ≤ γ, i = 1, 2, · · · , n} (25)

where pi, i = 1, 2, · · · , n are the samples obtained by
MC simulation.

Figure 2 compares the distributions of the risk in-
dexes obtained from the two methods. Both distribu-
tions have the same supports, but the uncertainty dis-

tribution has more weights on high values of the risk
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Fig. 2 Level-2 propagation results from uncertainty-theory-
based (UTB, solid line) and probability-based (PB, dashed
line) methods

Table 2 Risk indexes of the monotone risk model

Method p VaR(0.9)

UTB Method 0.1519 0.1755
PB Method 0.1520 0.1685

index than the probability theory. This means that the

uncertainty theory-based (UTB) method is more con-
servative than the PBmethod, since it tends to evaluate
a higher risk. This is obtained also from the values in

Table 2: although both methods have roughly the same
p, the UTB method yields a higher VaR(0.9), which
indicates a high risk.

3.3 Non-monotone Risk Model

3.3.1 Uncertainty Analysis Using Uncertain
Simulation

In many practical situations, the risk index of inter-

est cannot be expressed as a strictly monotone function
of the level-2 uncertain parameters. For such cases, we
cannot obtain the exact uncertainty distributions for p

by directly applying the operational laws. Rather, the
maximum uncertainty principle needs to be used to de-
rive the upper and lower bounds for the uncertainty

distribution based on an uncertain simulation method
developed by (Zhu, 2012). The uncertain simulation can
provide a reasonable uncertainty distribution of a func-

tion of uncertain variables, and does not require the
monotonicity of the function with respect to the vari-
ables. In this section, the method is extended to cal-

culate the upper and lower bounds of an uncertainty
distribution for risk assessment.

Definition 6 ((Zhu, 2012)) An uncertain variable ξ

is common if it is from the uncertain space (	,B,M) to

	 defined by ξ(γ) = γ, where B is the Borel algebra over

	. An uncertain vector ξ = (ξ1, ξ2, · · · , ξn) is common
if all the elements of ξ are common.

Theorem 2 ((Zhu, 2012)) Let f : 	n → 	 be a Borel
function, and ξ = (ξ1, ξ2, · · · , ξn) be a common uncer-

tain vector. Then the uncertainty distribution of f is:

Ψ(x) = M {f(ξ1, ξ2, · · · , ξn) ≤ x}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
Λ1×Λ2×···×Λn⊂Λ

min
1≤k≤n

Mk {Λk} ,
if sup

Λ1×Λ2×···×Λn⊂Λ
min

1≤k≤n
Mk {Λk} > 0.5

1− sup
Λ1×Λ2×···×Λn⊂Λc

min
1≤k≤n

Mk {Λk} ,
if sup

Λ1×Λ2×···×Λn⊂Λc

min
1≤k≤n

Mk {Λk} > 0.5

0.5, otherwise.

(26)

In (26), Λ = f−1(−∞, x), {Ai} denotes a collection of
all intervals of the form (−∞, a], [b,+∞), ∅ and 	,
and each Mk{Λk} is derived based on (27):

M{B} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
B⊂⋃

Ai

∞∑
i=1

M{Ai},

if inf
B⊂⋃

Ai

∞∑
i=1

M{Ai} < 0.5

1− inf
Bc⊂⋃

Ai

∞∑
i=1

M{Ai},

if inf
Bc⊂⋃

Ai

∞∑
i=1

M{Ai} < 0.5

0.5, otherwise,

(27)

where B ∈ B, and B ⊂
∞⋃
i=1

Ai.

From Theorem 2, it can be seen that (27) gives a

theoretical bound of each Mk{Λk} in (26). Let m =

inf
B⊂⋃

Ai

∞∑
i=1

M{Ai}, n = inf
Bc⊂⋃

Ai

∞∑
i=1

M{Ai}. It is clear

that any values within m and 1 − n is a reasonable

value for M{B} . Hence, we use m as the upper bound
and 1 − n as the lower bound of Mk{Λk} and develop
a numerical algorithm for level-2 uncertainty analysis.

Algorithm 1. (Level-2 uncertainty analysis for non-
monotone models)

step 1: Set m1(i) = 0 and m2(i) = 0, i = 1, 2, · · · , n.
step 2: Randomly generate uk =

(
γ
(1)
k , γ

(2)
k , · · · , γ(n)

k

)
with 0 < Φi

(
γ
(i)
k

)
< 1, i = 1, 2, · · · , n, k =

1, 2, · · · , N .
step 3: From k = 1 to k = N , if f(uk) ≤ c, m1(i) =

m1(i) + 1, denote x
(i)
m1(i)

= γ
(i)
k ;

otherwise, m2(i) = m2(i) + 1, denote y
(i)
m2(i)

=

γ
(i)
k , i = 1, 2, · · · , n.
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step 4: Rank x
(i)
m1 and y

(i)
m2 from small to large, respec-

tively.
step 5: Set

a(i) =Φ
(
x
(i)
m1(i)

)
∧
(
1− Φ

(
x
(i)
1

))
∧(

Φ
(
x
(i)
1

)
+ 1− Φ

(
x
(i)
2

))
∧(

Φ
(
x
(i)
m1(i)−1

)
+ 1− Φ

(
x
(i)
m1(i)

))
;

b(i) =Φ
(
y
(i)
m2(i)

)
∧
(
1− Φ

(
y
(i)
1

))
∧(

Φ
(
y
(i)
1

)
+ 1− Φ

(
y
(i)
2

))
∧(

Φ
(
y
(i)
m2(i)−1

)
+ 1− Φ

(
y
(i)
m2(i)

))
.

step 6: L
(i)
1U = a(i), L

(i)
1L = 1 − b(i), L

(i)
2U = b(i), L

(i)
2L =

1− a(i).
step 7: If aU = L

(1)
1U∧L(2)

1U∧· · ·∧L(n)
1U > 0.5, LU = aU ; if

bU = L
(1)
2L ∧L

(2)
2L ∧· · ·∧L

(n)
2L > 0.5, LU = 1−bU ;

otherwise, LU = 0.5.

If aL = L
(1)
1L∧L(2)

1L∧· · ·∧L(n)
1L > 0.5, LL = aL; if

bL = L
(1)
2U ∧L

(2)
2U ∧· · ·∧L

(n)
2U > 0.5, LL = 1−bL;

otherwise, LL = 0.5.

Through this algorithm, the upper and lower bound-

s for the uncertainty distribution of p can be construct-
ed, denoted by [ΨL(p), ΨU (p)]. Similar to the monotone
case, we define two risk indexes considering the level-2

uncertainty:

Definition 7 Let p described by (11) be the probabil-

ity that a hazardous event will happen, and let ΨL(p)
and ΨU (p) be the lower bound and upper bound of the
uncertainty distribution of p, respectively. Then

p =

∫ +∞

0

[
1− ΨL(p) + ΨU (p)

2

]
dp (28)

is defined as average risk, and

[VaRL,VaRU ] (γ) =

[sup {p|ΨL(p) ≤ γ} , sup {p|ΨU (p) ≤ γ}] (29)

is defined as bounded value-at-risk.

The defined average risk is a reflection of the average
belief degree of the risk index p, and a greater value of
p means more severe risk that we believe we will suffer.

The meaning of the bounded value-at-risk is that, with
belief degree γ, we believe that the value of risk index is
within the interval [VaRL,VaRU ] (γ). Obviously, if we

fix the value of γ, a wider bounded value-at-risk means
a more conservative assessment result. Meanwhile, we
believe a greater VaRU (γ) reflects that the risk is more

severe.

Table 3 Distributions of level-1 and level-2 parameters

Parameter Level-1
Level-2

UTB Method ETB Method

x1 N(μ1, 5) μ1 ∼ L(9, 11) μ1 ∼ U(9, 11)
x1 N(μ2, 5) μ2 ∼ N (10, 0.3) μ2 ∼ N(10, 0.3)

3.3.2 Numerical Case Study

We consider a problem of structural reliability in

Choi et al (2007) to further elaborate on the developed
method. Let the limit-state function of a structure be

g(x1, x2) = x4
1 + 2x4

2 − 20. (30)

where x1 and x2 are random variables, and the risk
index of interest is the probability that the structure
fails, which can be written as

pf = Pr {g(x1, x2) < 0} . (31)

Assume that x1 and x2 follow normal distributions with
parameters (μ1, σ1) and (μ2, σ2), respectively. The pa-
rameters μ1 and μ2 are not precisely known due to the

epistemic uncertainty, whereas σ1 and σ2 are known
as crisp values. Based on experts knowledge, the belief
degree of μ1 is modeled by a linear uncertainty dis-

tribution and μ2 is described by a normal uncertain-
ty distribution (see Table 3). The bounded uncertainty
distribution can, then, be obtained through Algorithm

1.

The solid line and dashed line in Figure 3 show the

upper and lower uncertainty distributions of the risk
index pf , respectively. Average risk and bounded value-
at-risk are calculated using the numericalmethod based

on (28) and (29), i.e., p = 0.001980 and [VaRL,VaRU ] (0.9) =
[0.001689, 0.003548].

Since the developed method offers a bounded un-
certainty distribution of pf , it is then compared with
an evidence theory-based (ETB) method, in which the

belief degree of pf is also given as upper and lower
distributions called plausibility (Pl) and belief (Bel)
function, respectively. In this paper, the ETB method

models the belief degrees of μ1 and μ2 using probability
distributions (see Table 3).A double loop Monte Carlo
simulation combined with a discretization method for

getting basic probability assignments (BPAs) is used to
obtain Bel (pf ) and Pl (pf ) (Limbourg and Rocquigny,
2010; Tonon, 2004). In Figure 3, the dotted line and dot-

dash line represent Bel and Pl, respectively. It should
be noted that although we use Bel and Pl as mathe-
matical constructs, they are not strictly the concepts of

Belief and Plausibility defined by Shafer (i.e. the degree
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Fig. 3 Results of level-2 uncertainty analysis (CDF: cumulative distribution function, Bel: belief function, Pl: plausibility
function, UDL: lower uncertainty distribution, UDU : upper uncertainty distribution.)

Table 4 Risk indexes of the non-monotone risk model

Method p [VaRL,VaRU ] (0.9)

UTB Method 0.001980 [0.001689,0.003548]
ETB Method 0.002012 [0.002440,0.003140]

of truth of a proposition (Shafer, 1976)). The two func-
tions only represent bounds on a true quantity. To illus-
trate this, a cumulative density function (CDF) of pf
is calculated via a double loop MC simulation method,
shown as the crossed line in Figure 3. It is seen that the
CDF is covered by the area enclosed by Bel and Pl. In

this sense, the CDF obtained in PB method is a special
case of the ETB model, and the Bel (pf ) and Pl (pf )
give a reasonable bound of the probability distribution

of pf .
Given Bel (pf ) and Pl (pf ), the two risk indexes can

be calculated by

p =

∫ ∞

0

(
1− Bel(pf ) + Pl(pf )

2

)
dp, (32)

and

[VaRL,VaRU ] (γ) =

[sup {pf |Bel(pf ) ≤ γ} , sup {pf |Pl(pf ) ≤ γ}] , (33)

and the results are tabulated in Table 4.
Figure 3 shows a comparison of the distributions of

belief degrees on pf in UTB method and ETB method.

The distributions have the same supports, whereas the

upper and lower uncertainty distributions fully cover

the CDF and the area enclosed by Bel and Pl, which
indicates that the developed method is more conser-
vative. This is because the subjective belief described

by uncertainty distributions usually tends to be more
conservative, and is more easily affected by epistemic
uncertainty. This phenomenon is also reflected by the

two defined risk indexes: the average risk ps are nearly
the same on different theory basis, while the bounded
value-at-risk of ETB method is within that of the UTB

method.

We also find that the bounded value-at-risk obtained

by the developed UTB method may be too wide for
some decisionmakers. Thismay be a shortcoming of the
proposed method. Therefore, when choosing a method

for risk analysis from the PB method, ETB method
and UTB method, we need to consider the attitude
of decision maker. For a conservative decision maker,

the bounded uncertainty distribution is an alternative
choice.

4 Application

In this section, the developed level-2 uncertainty
analysis method is applied to a real application of flood

risk assessment. In Section 4.1, we briefly introduce the
system of interest. Sections 4.2 and 4.3 show the pro-
cess of level-2 uncertainty analysis based on uncertainty

theory, to illustrate the effectiveness of the method.
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Fig. 4 Flooding risk system (Limbourg and Rocquigny,
2010)

4.1 System Description

In this case study, we consider a residential area lo-
cated near a river, which is subject to potential risks of
floods, as shown in Figure 4. As a mitigation and pre-
vention measure, a dike is constructed to protect this

area. The final goal is to calculate the risk of floods to
determine whether the dike needs to be heightened. A
mathematical model is develop in (Limbourg and Roc-

quigny, 2010) which calculates the maximal water level
Zc:

Zc = g(Q,Ks, Zm, Zv, l, b)

= Zv +

(
Q

Ks · b ·
√

(Zm − Zv)/l

)3/5

, (34)

where Zm denotes the riverbed level at the upstream
part of the river, Zv denotes the riverbed level at the

downstream part of the river, Ks denotes the friction
coefficient of the riverbed, Q denotes the yearly max-
imal water flow, l denotes the length of river, and b

denotes the width of river (Limbourg et al, 2010). The
risk of floods can, then, be calculated as the probability
that the annual maximum water level exceeds the dike

height:

pflood = Pr{Zc > H}. (35)

4.2 Parameter Setting

The input variables in 34 are assumed to be random

variables and the form of their PDFs are assumed to be
known, as shown in Table 5 (Limbourg and Rocquigny,
2010). However, due to limited statistical data, the dis-

tribution parameters of these PDFs cannot be precisely
estimated using statistic methods and therefore, are af-
fected by epistemic uncertainty, which should be evalu-

ated based on experts knowledge. In this paper, the ex-
perts knowledge on the distribution of these parameters
is obtained by asking the experts to give the uncertain-

ty distributions of the parameters, as shown in Table 5.

Table 6 Risk indexes for the flood system

Index Value

pflood 0.0161
[VaRL,VaRU ] (0.9) [0.0073,0.0476]

For example, the yearly maximal water flow, denoted

by Q, follows a Gumbel distribution Gum(α, β), and
according to expert judgements, α and β follow normal
uncertainty distributionsNα(1013, 48) andNβ(558, 36),

respectively. In addition, considering some physical con-
straints, the input quantities also have theoretical bound-
s, as given in Table 5.

4.3 Results and Discussions

Uncertain simulation method is used to propagate
the level-2 uncertainty using Algorithm 1. The theo-

retical bounds in Table 5 are considered by truncating
the probability distributions at these bounds. The low-
er and upper bounds for the uncertainty distributions

of pflood are shown in Figure 5, which represents the be-
lief degrees on pflood considering the level-2 uncertainty.
Average risk and bounded value-at-risk are calculated

based on (28) and (29) and presented in Table 6.

It follows that the average yearly risk is pflood, which
corresponds to an average return period of 62 years.

This is unacceptable in practice, because it is too short
when compared to a commonly required 100-year-return
period. To solve this problem, one measure is to height-

en the dike for a more reliable protection. Another so-
lution might be increasing the friction coefficient of the
riverbed Ks, noting from 34 that Zc decreases with Ks.

The bounded Value-at-risk is relatively wide, which
indicates that due to the presence of epistemic uncer-

tainty, we cannot be too confirmed on the calculated
risk index. The same conclusion can also be drawn from
Figure 5: the difference between the upper and lower

bounds of the uncertainty distributions are large, indi-
cating great epistemic uncertainty. To reduce the effect
of epistemic uncertainty, more historical data need to

be collected to support a more precise estimation of
the distribution parameters in the level-1 probability
distributions.

5 Conclusions

In this paper, a new level-2 uncertainty analysis
method is developed based on uncertainty theory. The
method is discussed in two respects: for monotone risk

models, where the risk index of interest is expressed
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Table 5 Uncertainty description of level-1 and level-2 parameters

Parameter Probability distribution Level-2 uncertainty distribution Theoretical bounds

Q Gum(α, β)
α Nα(1013, 48) [10,10000]
β Nβ(558, 36)

Ks N(μKs
, σ2

Ks
)

μKs
L(22.3, 33.3)

[5,60]
σKs

L(2.5, 3.5)

Zm N(μZm
, σ2

Zm
)

μZm
L(54.87, 55.19)

[53.5,57]
σZm

L(0.33, 0.57)

Zv N(μZv
, σ2

Zv
)

μZv
L(50.05, 50.33)

[48,51]
σZv

L(0.28, 0.48)
l 5000(constant) -
b 30(constant) -
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Fig. 5 Result for level-2 uncertainty propagation based on UTB method

as an explicit monotone function of the uncertain pa-

rameters, and level-2 uncertainty analysis is conduct-
ed based on operational laws of uncertainty variables;
for non-monotone risk models, an uncertain simulation-

based method is developed for level-2 uncertainty anal-
ysis. Three indexes, i.e., average risk, Value-at-risk and
bounded Value-at-risk, are defined for risk-informed de-

cision making in the level-2 uncertainty setting. Two
numerical studies and an application on a real exam-
ple from literature are worked out to illustrate the de-

veloped method. The developed method is also com-
pared to some commonly-used level-2 uncertainty anal-
ysis methods, e.g., PB method and ETB method. The

comparisons show that, in general, the UTB method is
more conservative than the methods based on proba-
bility theory and evidence theory.
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Optimization of Spare Parts Varieties Based on
Stochastic DEA Model

Meilin Wen, Tianpei Zu, Miaomiao Guo, Rui Kang* Yi Yang

Abstract—Accurate inventory management starts with the
scientific and rational classification of numerous varieties of spare
parts. This paper presents a stochastic data envelopment analysis
(DEA) model to address the problem of optimization of spares
varieties under uncertainty. An index system is proposed in
terms of product life-cycle process, which contains five design
indexes, four operation indexes and five support indexes. Then
quantification method of the index system is briefly discussed
in preparation for mathematical calculation. A stochastic spares
optimization model (SSOM) is proposed based on stochastic DEA
with the constraints of 14 factors of the index system. The
SSOM could be converted into equivalent deterministic models by
probability theory, which overcomes the difficulty in solving non-
linear programming. A numerical example is given to illustrate
the proposed method in terms of ability to provide reasonable
inventory management policies.

Index Terms—uncertain environment, spare parts, optimiza-
tion, stochastic, data envelopment analysis

I. INTRODUCTION

SPARES parts, which are stocked to replace failed parts, are

the indemnification goods for plants to maintain normal

functioning. Stocking strategy for spare parts has a pivotal

influence on the productivity and efficiency of industrial plants.

Conservative strategy may lead to overstocking and high cost

of inventory, which will reduce the profit of industrial plants.

On the other hand, optimistic strategy may result in shortage of

necessary spare parts, long machine downtime and decrement

in productivity. Therefore, optimization of spare parts varieties

plays an important role in inventory management.

There are considerable existing literatures on optimizing

stocking strategy of spare parts. It is important to have a

reasonable index system before optimizing the controlling

strategy. Some researchers tried to solve this problem by

a single attribute. For example, Nahmias [1] proposed a

one-dimensional approach that is only based on total cost.
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However, strategy with only one single attribute cannot solve

the problem when the spare parts are competing. Many multi-

attribute evaluation systems were then developed to overcome

this difficulty. As was reported in Ng [2], Zhou and Fan [3],

Hadi-Vencheh [4] and Lin et al. [5], a classification scheme

including annual dollar usage, lead time and average unit

cost was proposed. Multi-attribute decision making techniques

were employed by Molenaers [6], Almeida [7] and Sharaf and

Helmy [8] to provide reasonable decision-making proposals.

Deterministic attribute models were gradually developed into

random attribute models in terms of parameter dispersion.

Quantitative analyses for indeterministic variables were then

carried out. Wang [9] established a stochastic model for joint

spare parts inventory and planned maintenance optimization

considering the random nature of plant failures and then

applied stochastic dynamic programming to find the optimal

solutions over a finite time horizon. Godoy et al. [10] presented

a graphical technique which considered a stochastic lead time

and a reliability threshold to enhance spare parts ordering

decision-making. Gu et al. [11] assumed that the probability

density distribution functions of lifetime and the number

of failures follow normal distributions, then worked out the

optimal order quantities by minimizing the total cost. Li et

al. [12] proposed a stochastic programming model to seek

a optimal spare parts ordering and pricing policy from a

distributor’s view. Zamar et al. [13] developed a quantile-

based scenario analysis approach for stochastic supply chain

optimization under uncertainty. However, the above research

mainly focus on factors that influence the demand of spare

parts in the normal operational stage or supporting stage and

few articles investigate the factors in the whole product life-

cycle process. In this paper, we will establish a comprehensive

index system in terms of the whole product life-cycle process,

including design factors, operation factors and support factors.

Once the evaluation indexing system is established, it will

need to choose a kind of evaluation method that can evaluate

the importance of these factors. Many methods have emerged

in this field. The well-known ABC classification [3], [4],

[14] is simple to use and easy to understand. However, ABC

analysis is based on only single measurement such as annual

dollar usage. Other criteria have gradually been recognized

to be important in inventory management. Analytic hierarchy

process (AHP) was adopted to determine the weights of factors

for multi-attribute evaluation system. For example, Braglia

[15] employed AHP on an inventory policy matrix based

on the reliability centered maintenance (RCM) to identify

the best control strategy. Molenaers [6] firstly presented the

multi-criteria classification issue in a logic decision tree based
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on item criticality, then used AHP at different nodes of the

diagram and converted relevant criteria into a single scalar to

represent the criticality of the part. However, AHP requires

subjective judgment when making pair-wise comparisons.

Heuristic algorithms like genetic algorithms [16], [17] and

artificial neural networks [18], [19] were also utilized to

evaluate the importance of index system. However, they are

complex and difficult in application.
Data Envelopment Analysis (DEA) is a Linear Program-

ming based technique for the analysis of efficiency of organi-

zations with multiple inputs and outputs and is proposed by

Charnes et al. in 1978 [20]. In DEA, the organization under

study is called a DMU (decision-making unit). Suppose there

are n DMUs in a DEA model: DMU0 is target DMU, DMUi

is the ith DMU (i = 1, 2, · · · , n), xi = (xi1, xi2, · · · , xip)
is the inputs vectors of DMUi, x0 = (x01, x02, · · · , x0p) is

the inputs vector of DMU0, yi = (yi1, yi2, · · · , yip) is the

outputs vectors of DMUi, y0 = (y01, y02, · · · , y0p) is the

outputs vector of DMU0, u ∈ Rp×1 is the vector of input

weights, v ∈ Rp×1 is the vector of output weights. Then a

typical basic DEA model called CCR is represented as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max θ = vty0

utx0

subject to:
vtyi ≤ utxi, i = 1, 2, · · · , n,
u ≥ 0
v ≥ 0.

(1)

In the above model, the objective is to obtain the ratio of the

weighted output to the weighted input weights with the con-

straints that the ratio of virtual output vs. virtual input should

not exceed 1 for every DMU. By virtue of the constraints, the

optimal objective value θ∗ is at most 1. The optimal solution

θ∗ yields an efficiency score for a particular DMU and the

process is repeated for each DMUi, i = 1, 2, · · · , n. DEA

method can be regarded as a production process with multiple

inputs and outputs. As is known, all the manufactures hope to

produce maximum outputs with the least inputs. This principle

is also reflected in DEA model. The DMU will be more

effective than other DMUs if it has a larger optimal value.

Therefore, DMUs are regarded to be inefficient if θ∗ < 1
, while DMUs are efficient if θ∗ = 1. Compared with the

aforesaid methodology, DEA have the advantages in avoiding

subjective factors, having simple algorithms and reducing

errors. Moreover, it can contain controllable input (output)

and non-controllable input (output). DEA can efficiently deal

with fact that the numerical dimension is not unified. Several

DEA models, i.e. BCC model and Additive model, have

been developed to suit different application scenarios [21]–

[24]. In view of the situation that inputs and outputs of

the DMU cannot be accurately determined, many literatures

have proposed opportunity constrained programming models

[25]–[27], stochastic DEA models [28]–[31] and fuzzy DEA

models [32]. In this paper, some factors in index system, i.e.

corrective maintenance time, logistic delay time and mission

time, are assumed to be random variables, considering that

their values will change with real-life situations. Therefore, a

stochastic DEA model is employed to address the problem of

optimization of spare parts varieties.

Fig. 1. Index system

The reminder of this paper is organized as follows. In

section 2, a comprehensive index system is established in

terms of the whole product life-cycle process. Section 3 briefly

introduces the quantification method of the index systems

with respect to qualitative factors and quantitative factors.

Section 4 establishes the stochastic spares optimization model

(SSOM) based on stochastic DEA method. Some algorithms

are addressed to obtain the equivalent deterministic model

in Section 5. A numerical example is given to illustrate the

SSOM in Section 6. Section 7 summarizes the main work and

contributions of this paper.

II. ESTABLISHMENT OF INDEX SYSTEM

In this section, an index system is established in terms

of design, operation and support as shown in Fig. 1. De-

sign factors are composed of mean time between failures

(MTBF), consequences of failure (CoF), the number of stand-

alone installation, replace-ability and standard part, which

are determined in the design phase. Operation factors are

the attributes that influence the inventory of spare parts in

the operation phase, including operation environment, turn

around time (TAT), mission time and the number of equipment.

Support factors consist of corrective maintenance time, logistic

delay time, the number of suppliers, purchase lead time and

cost, which are related to logistics and maintenance.

A. Design indexes

The subsection below describes the properties of five design

indexes.

MTBF refers to the average amount of time that a device or

product functions before failing, which is an important index

in repairable system [33]. MTBF is an important parameter for

measuring the reliability and availability [34], [35]. Spare parts

with short MTBFs are always at a low level of reliability and

availability and need frequent maintenance. Therefore, items

with short MTBFs should be kept at high inventory levels.
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CoF refers to losses or damages that are caused by a failure.

Generally, consequences of failure could be classified into

five types in terms of severity, i.e. catastrophic consequences,

critical consequences, severe consequences, marginal conse-

quences and negligible consequences. Items that are likely to

cause serious consequences may high inventory levels because

their shortage of spare parts will have a critical impact on the

overall system.

The number of stand-alone installation is the number of

a kind of component or unit installed on an equipment,

which is clarified in the design phase. The number of stand-

alone installation may, to some extent, reflect the demand for

spare parts. Components with a large number of stand-alone

installation are more likely to fail, so the demand for spare

parts is higher.

Replace-ability is the capability of an item to be replaced

by site workers. Components without replace-ability cannot be

replaced in the current site and need to be sent to senior site.

Thus, it is reasonable to reduce the inventory level of items

with poor site replace-ability.

A standard part refers to a part or material that conforms

to an established industry published specification. The lack of

non-standard parts is more difficult to handle than standard

parts because standard parts are interchangeable and easier to

obtain than non-standard parts. Therefore, it is necessary to

maintain the inventory level of non-standard parts.

B. Operation indexes

This subsection gives a brief introduction of opera-

tion indexes, including mission time, operation environment,

turnaround time (TAT) and the number of equipment.

Mission refers to the task, together with the purpose, that

clearly indicates the action to be taken and the reason therefore

[36]. Mission time is the length of time to complete the

mission. Mission time has a direct impact on the demand for

spare parts because more spare parts may need to be replaced

within a longer mission time.

Operational environment is defined as a composite of the

conditions, circumstances, and influences that affect the em-

ployment of capabilities and bear on the decisions of the

commander [36]. The operating environment has a crucial

influence on the life of components and the demand for com-

ponents. For example, the operating environment of aircraft

engines is more stringent than displays installed in cockpits

in the same plane. The screws on the engine are more likely

to fail than the screws on the display. Therefore, the spare

parts for the screws on the engine are higher than those on

the display.

Turnaround time (TAT) is defined as the length of time

between arriving at a point and being ready to depart from

that point [36]. TAT depends on the properties of equipment as

well as maintainability and supportability in practice, and will

change with the real scenarios. TAT has a obvious influence

on the requirement of spare parts as there is not enough time

to prepare spare parts in case of limited TAT.

The sum of equipments is the total number of the equip-

ments participating in the mission. The sum of equipments is

of interest because the requirement of inventory of spare parts

is in a proportional relationship with it.

C. Support Indexes

The subsection below describes the properties of five sup-

port indexes.

Corrective maintenance time is the time that begins with

the observance of a malfunction of an item and ends when

the item is restored to a satisfactory operating condition

[37]. Corrective maintenance time could represent one item’s

maintainability. Components with long corrective maintenance

time are poor in maintainability and thus should maintain high

inventory levels.

Logistic delay time is the component of downtime during

which no maintenance is being accomplished on the item

because of technician alert and response time, supply delay,

or administrative reasons [37]. As the shortage of these spare

parts may cause huge time and money costs, spare parts with

long logistics delay time should maintain a high inventory

level.

Purchase lead time is defined as the time between the

initiation and completion of a purchase process and could be

determined by market research and historical experience. Parts

with long purchase lead time are more likely to be in short

supply. Therefore, spare parts with a long procurement cycle

should maintain a stable inventory level.

The number of suppliers is the sum of suppliers who can

provide required spare parts. According to MIL-STD-965B,

components are selected from program parts selection list

(PPSL) and their suppliers are then determined. The number

of suppliers has a direct effect on the supply stability because

components with the large number of suppliers are at a low

risk in shortage.

Cost include cost of purchase and cost of storage. The cost

of spare parts is determined by their natural properties and is

therefore determined during the design phase. It is intuitive to

store the spare parts whose cost is at a low level with respect

to costs-saving.

III. QUANTIFICATION METHOD OF INDEX SYSTEM

Quantification is an important step before we take the

indexes into mathematical models. Based on the properties

of indexes demonstrated in Section II, these indexes could be

classified into two types, qualitative indexes and quantitative

indexes.

Qualitative indexes include operational environment (OE),

replace-ability (RA), standard part (SP), consequences of fail-

ure (CoF). To employ these factors in the mathematical model,

Table I shows the qualification principles of these indexes.

Quantitative indexes could be further divided into two sub-

types, deterministic factors and random factors. Deterministic

factors could be represent by crisp values and include the sum

of equipments, the number of stand-alone installation, pur-

chase lead time, the number of suppliers and cost. Specifically,

purchase lead time, the number of suppliers and cost could

obtained by market research or historical experiences. The sum

of equipments and the number of stand-alone installation are
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TABLE I
QUANTIFICATION PRINCIPLES

1 3 5 7 9
OE Particularly harsh Severe Moderate Mild Gentle
CoF Catastrophic Critical Severe Marginal Negligible
RA Cannot be replaced Can be replaced
SP Standard part Non-standard part

designed according to the requirements of mission. Random

factors are the variables that will change with actual scenarios,

including TAT, MTBF, mission time, corrective maintenance

time and logistic delay time. The approach to determine these

quantitative indexes is not demonstrated here as it is not the

focus of this paper.

IV. MODELING SSOM BASED ON STOCHASTIC DEA

In this section, we develop a stochastic programming model

based on Additive model proposed by Charnes et al. [22] in

1985 which considers the total slacks of inputs and outputs

simultaneously in arriving at a point on the efficient frontier.

In the proposed stochastic spares optimization model (SSOM),

every candidate inventory item is regarded as a decision-

making unit (DMU). The constraints derive from the index

system. The objective is to find the optimum which simulta-

neously maximizes outputs and minimizes inputs in the sense

of vector optimizations. The candidate DMU is efficient when

the objective is zero, based on which we can rank all candidate

DMUs. The section is organized as follows. Firstly, we give

a brief introduction on the relative symbols and notations.

Then we classify 14 factors into input variables and output

variables. The SSOM is subsequently established with input

vectors and output vectors. Finally, a ranking criterion is given

and illustrated, based on which we can give priorities to all

candidate DMUs.

Assume that there are n DMUs and then relative symbols

and notations are introduced as follows:

DMUk : the kth DMU, k = 1, 2, · · · , n;

DMU0 : target DMU;

T̃k : the random TAT of DMUk;

F̃k : the random MTBF of DMUk;

W̃k : the random mission time of DMUk;

M̃k : the random corrective maintenance time of DMUk;

D̃k : the random logistic delay time of DMUk;

Sk : the number of suppliers of DMUk;

Ek : the operational environment of DMUk

Gk : the consequences of failure of DMUk;

Ak : the replace-ability of DMUk;

Pk : standard part or not of DMUk;

Nk : the number of stand-alone installation of DMUk;

Zk : the number of equipments of DMUk;

Lk : the purchase lead time of DMUk;

Ck : the cost of DMUk;

λk: the weght of kth DMU i = 1, 2, · · · , n;

s−i : the slack of each ith input;

s+j : the slack of each jth output;

Pr is the probability measure;

α is belief degree which is a predetermined number between

0 and 1.

DEA method can be regarded as a production process with

multiple inputs and outputs. As is known, all the manufactures

hope to produce maximum outputs with the least inputs.

Therefore, this principle is also reflected in DEA model. The

DMU will be more effective than other DMUs if it has a

smaller input as well as a larger output. According to the

strategy tendency with smaller inputs and larger outputs, we

divide all the parameters into input indexes and output indexes.

It should be classified as input index if more attentions need

to be paid to the smaller parameter, conversely it should be

regarded as output index. For example, MTBF is regarded

as an input index because items with shorter MTBF are

more important with the aim of selecting pivotal spare parts

varieties. By contrast, purchase lead time is regarded as an

output variable as it is more likely to be short of the spare parts

whose purchase lead time is long. The inputs and outputs are:

Xk = {T̃k, F̃k, Sk, Ek, Gk, Ak, Ck}, k = 1, 2, 3, · · · , n;
Yk = {W̃k, Nk, Zk, M̃k, Lk, D̃k, Pk}, k = 1, 2, 3, · · · , n.

Then the SSOM is:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max θ =
7∑

i=1

s−i +
7∑

j=1

s+j

subject to:

Pr

{
n∑

k=1

T̃kλk ≤ T̃0 − s−1

}
≥ α,

Pr

{
n∑

k=1

F̃kλk ≤ F̃0 − s−2

}
≥ α,

Pr

{
n∑

k=1

W̃kλk ≥ W̃0 + s+1

}
≥ α,

Pr

{
n∑

k=1

M̃kλk ≥ M̃0 + s+4

}
≥ α,

Pr

{
n∑

k=1

D̃kλk ≥ D̃0 + s+6

}
≥ α,

n∑
k=1

Skλk ≤ S0 − s−3 ,
n∑

k=1

Ekλk ≤ E0 − s−4 ,
n∑

k=1

Gkλk ≤ G0 − s−5 ,
n∑

k=1

Akλk ≤ A0 − s−6 ,
n∑

k=1

Ckλk ≤ C0 − s−7 ,
n∑

k=1

Nkλk ≥ N0 + s+2 ,

n∑
k=1

Zkλk ≥ Z0 + s+3 ,

n∑
k=1

Lkλk ≥ L0 + s+5 ,

(2a)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
k=1

Pkλk ≥ P0 + s+7 ,

n∑
k=1

λk = 1,

λk ≥ 0, k = 1, 2, · · · , n
s−i ≥ 0, i = 1, 2, · · · , 7
s+j ≥ 0, j = 1, 2, · · · , 7

(2b)

Ranking criterion: The closer θ is to zero, the more

efficient the DMU0 is ranked.

The θ is the sum of all the input slacks and output slacks

for one DMU. To let θ close to 0, either the inputs are small,

or the outputs are larger, or both of them. Thus the closer to 0

the θ is, the more potential the DMU has got to be reserved.

We can give priorities to DMUs by the ranking criterion,

based on which inventory policies could be determined.

V. EQUIVALENT DETERMINISTIC MODEL

This section simplifies the constraints of random variables

and develops equivalent deterministic models to overcome the

difficulty in solving nonlinear programming.

Defination 1. (Liu [38]) Suppose that ξ is a random variable
defined on probability space (Ω, Ã,Pr). For any α ∈ (0, 1] ,
the α-optimistic values of ξ are defined as

ξsup(α) = sup{r|Pr{ξ ≥ r} ≥ α}.
Defination 2. (Liu [38]) Suppose that ξ is a random variable
defined on probability space (Ω, Ã,Pr). For any α ∈ (0, 1] ,
the α-pessimistic values of ξ are defined as

ξinf(α) = inf{r|Pr{ξ ≤ r} ≥ α}.
Defination 3. A real-valued function f defined on a convex
set X ∈ Rn is said to be quasiconcave if

f (λx+ (1− λ) v) ≥ min {f (x) , f (v)}
for any x, y ∈ X and 0 < λ < 1.

Theorem 1. Assume T̃1, T̃2, . . . , T̃n are independent random
variables defined on probability space (Ω, Ã,Pr). If Pr{T̃k =
xk}(k = 1, 2, · · · , n) are quasiconcave, and any α is given
in (0.5, 1] , λk ∈ [0, 1], then for

Pr

{
n∑

k=1

T̃kλk ≤ T̃0 − s−1

}
≥ α, (3)

we have
n∑

k=1,k 
=0

{λk(T̃k)inf(α)}+λ0[(T̃0)sup(α)] ≤ (T̃0)sup(α)− s−1 .

(4)

Proof. Without loss of generality, let n = 2, λ1 = λ0 and
T̃1 = T̃0, then we will consider the equation

Pr
{
T̃0λ0 + T̃2λ2 ≤ T̃0 − s−1

}
≥ α. (5)

Rewrite equation (5) as

Pr
{
(1− λ0) T̃0 + (−λ2) T̃2 ≤ s−1

}
≤ 1− α. (6)

Then we have

Pr{(1− λ0) T̃0 + (−λ2) T̃2 ≤ s−1 } =

1− sup
x1+x2>s−1

{Pr{(1− λ0) T̃0 = x1} ∧ Pr{(−λ2) T̃2 = x2}}

≤ 1− α.
(7)

Hence,

sup
x1+x2>s−1

{Pr{(1− λ0) T̃0 = x1}∧Pr{(−λ2) T̃2 = x2}} ≥ α.

Suppose that (x∗
1, x

∗
2) = arg sup

x1+x2∈R
Pr{{(1− λ0) T̃0 =

x1} ∧ Pr{(−λ2) T̃2 = x2}| {x1 + x2 > s−1 }} ≥ α}.
It follows that Pr{(1− λ0) T̃0 = x∗

1} ∧ Pr{(−λ2) T̃2 =
x∗
2} ≥ α and x∗

1 + x∗
2 > s−1 .

Since Pr{(1− λ0) T̃0 = x∗
1} ∧ Pr{(−λ2) T̃2 = x∗

2} ≥ α
implies that Pr{(1− λ0) T̃0 = x∗

1} ≥ α, Pr{(−λ2) T̃2 =
x∗
2} ≥ α.
From that the functions Pr{(1− λ0) T̃0 = x1} and

Pr{(−λ2) T̃2 = x2} are quasiconcave, we have

x∗
1 ≤ ((1− λ0) T̃0)sup(α), x∗

2 ≤ ((−λ2) T̃2)sup(α).

Then we get

((1− λ0) T̃0)sup(α) + ((−λ2) T̃2)sup(α) ≥ s−1 .

Otherwise,

((1− λ0) T̃0)sup(α) + ((−λ2) T̃2)sup(α) < s−1 ,

Pr{(1− λ0) T̃0 = ((1− λ0) T̃0)sup(α)} ≤ Pr{(1− λ0) T̃0 =
x∗
1},

Pr{(−λ2) T̃2 = ((−λ2) T̃2)sup(1 − α)} ≤ Pr{(−λ2) T̃2 =
x∗
2},

which are contradict with probability function Pr{ξ ≥
ξsup(α)} ≥ α.

Conversely, if

((1− λ0) T̃0)sup(α) + ((−λ2) T̃2)sup(α) ≥ s−1 ,

we get
Pr{(1− λ0) T̃0 = a1} ≥ α,

Pr{(−λ2) T̃2 = a2} ≥ α.

since a1 < ((1− λ0) T̃0)supα , a2 < ((−λ2) T̃2)sup(α).
Consequently,
sup

x1+x2∈R
Pr{{(1− λ0) T̃0 = x1} ∧ Pr{(−λ2) T̃2 =

x2}| {x1 + x2 > s−1 }} ≥ α}.
Then,

Pr{(1− λ0) T̃0 + (−λ2) T̃2 ≤ s−1 } =

1− sup
x1+x2>s−1

{Pr{(1− λ0) T̃0 = x1} ∧ Pr{(−λ2) T̃2 = x2}}

≤ 1− α.

Finally, we can get

((1− λ0) T̃0)sup(α) + (

n∑
k=1,k 
=0

(
(−λk) T̃k)sup(α)

)
≥ s−1

(8)
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If λk = 0 or 1, it is obvious that

((1− λ0) T̃0)sup(α) = (1− λ0) (T̃0)sup(α)

((−λk) T̃k)sup(α) = (−λk) (̃Tk)inf(α)

If λk ∈ (0, 1), then 1− λθ > θ,−λk < θ,

((1− λ0) T̃0)sup(α) = sup{r|Pr { (1− λ0) T̃0 ≥ r} ≥ α}
= (1− λ0) sup{r/ (1− λ0) |Pr{T̃0 ≥ r/ (1− λ0)} ≥ α}
= (1− λ0) (T̃0)sup(α),

((−λk) T̃k)sup(α) = sup{r|Pr { (−λk) T̃k ≥ r} ≥ α}
= − λk sup{−r/λk|Pr{T̃k ≤ −r/λk} ≥ α}
= (−λk) (̃Tk)inf(α).

Then, equation (8) can be rewritten as:

n∑
k=1,k 
=0

{λk(T̃k)inf(α)}+λ0[(T̃0)sup(α)] ≤ (T̃0)sup(α)− s−1 .

(9)

Similarly, we may simplify other random constraints in the
same way, the model (2) can be rewrite as model (10).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max θ=
7∑

i=1

s−i +
7∑

j=1

s+j

subject to:
n∑

k=1

{λk(T̃k)inf(α)}+ λ0[(T̃0)sup(α)− (T̃0)inf(α)]

≤ (T̃0)sup(α)− s−1 ,
n∑

k=1

{λk(F̃K)inf(α)}+ λ0[(F̃0)sup(α)− (F̃0)inf(α)]

≤ (F̃0)sup(α)− s−2 ,
n∑

k=1

{λk(W̃k)sup(α)}+ λ0[(W̃0)inf(α)− (W̃0)sup(α)]

≥ (W̃0)inf(α) + s+1 ,
n∑

k=1

{λk(M̃k)sup(α)}+ λ0[(M̃0)inf(α)− (M̃0)sup(α)]

≥ (M̃0)inf(α) + s+4 ,
n∑

k=1

{λk(D̃k)sup(α)}+ λ0[(D̃0)inf(α)− (D̃0)sup(α)]

≥ (D̃0)inf(α) + s+6 ,
n∑

k=1

Skλk ≤ S0 − s−3 ,
n∑

k=1

Ekλk ≤ E0 − s−4 ,
n∑

k=1

Gkλk ≤ G0 − s−5 ,
n∑

k=1

Akλk ≤ A0 − s−6 ,
n∑

k=1

Ckλk ≤ C0 − s−7 ,
n∑

k=1

Nkλk ≥ N0 + s+2 ,

(10a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
k=1

Zkλk ≥ Z0 + s+3 ,

n∑
k=1

Lkλk ≥ L0 + s+5 ,

n∑
k=1

Pkλk ≥ P0 + s+7 ,

n∑
k=1

λk = 1,

λk ≥ 0, k = 1, 2, · · · , n
s−i ≥ 0, i = 1, 2, · · · , 7
s+j ≥ 0, j = 1, 2, · · · , 7

(10b)

Especially, when random variables obey normal distribu-
tions and they are independent, the equivalent model can be
rewrite as model (11),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max θ =
7∑

i=1

s−i +
7∑

j=1

s+j

subject to :
n∑

k=1,k 
=0

T k +Φ−1(α)σI
Tkλk + λ0[T 0 − σI

T0Φ
−1(α)]

≤ [T 0 − σI
T0Φ

−1(α)]− s−1 ,
n∑

k=1,k 
=0

F k +Φ−1(α)σI
Fkλk + λ0[F 0 − σI

F0Φ
−1(α)]

≤ [F 0 − σI
F0Φ

−1(α)]− s−2 ,
n∑

k=1,k 
=0

(W k − Φ−1(α)σO
Wk)λk + λ0[W 0 + σO

W0Φ
−1(α)]

≥ [W 0 + σO
W0Φ

−1(α)] + s+1 ,
n∑

k=1,k 
=0

(Mk − Φ−1(α)σO
Mk)λk+λ0[M0 + σO

M0Φ
−1(α)]

≥ [M0 + σO
M0Φ

−1(α)] + s+4 ,
n∑

k=1,k 
=0

(Dk − Φ−1(α)σO
Dk)λk + λ0[D0 + σO

D0Φ
−1(α)]

≥ [D0 + σO
D0Φ

−1(α)] + s+6 ,
n∑

k=1

Skλk ≤ S0 − s−3 ,
n∑

k=1

Ekλk ≤ E0 − s−4 ,
n∑

k=1

Gkλk ≤ G0 − s−5 ,
n∑

k=1

Akλk ≤ A0 − s−6 ,
n∑

k=1

Ckλk ≤ C0 − s−7 ,
n∑

k=1

Nkλk ≥ N0 + s+2 ,

n∑
k=1

Zkλk ≥ Z0 + s+3 ,

n∑
k=1

Lkλk ≥ L0 + s+5 ,

n∑
k=1

Pkλk ≥ P0 + s+7 ,

n∑
k=1

λk = 1,

(11a)
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⎧⎨⎩
λk ≥ 0, k = 1, 2, · · · , n
s−i ≥ 0, i = 1, 2, · · · , 7
s+j ≥ 0, j = 1, 2, · · · , 7

(11b)

where Φ−1 (α) is the inverse function of the standard

normal distribution, σI
TK is the standard deviation of

Tk (k = 1, 2, ..., n), σI
T0

is the standard deviation of T0 , T k is

the average value of Tk (k = 1, 2, ..., n), T 0 is the average val-

ue of T0. σO
Wk

is the standard deviation of Wk (k = 1, 2, ..., n),

σO
W0

is the standard deviation of W0 , W k is the average value

of Wk (k = 1, 2, ..., n), W 0 is the average value of W0.

VI. A NUMERICAL EXAMPLE

In this section, we apply and evaluate the performance of

the proposed method to address the problem of optimization

of spare parts varieties. Firstly, we introduce the background

on this simple system and the information of input and output

factors. Then we calculate the optimal value of each DMU

under SSOM. Finally, we provide some decision proposals on

inventory management.

We focus on a depot which support eight airplanes in a

mission. Ten items are selected randomly from the airplane

parts list as an example to illustrate the proposed approach.

The quantification results of qualitative indexes are obtained

from expert elicitation as shown table II. The quantification

results of deterministic indexes are determined by mission

requirements and historical data, as shown in table III. The

distributions of random variables are supposed to be normal

distributions to reduce the computational complexity and the

relative data are shown in table IV.

We regard each type of item as a DMU to calculate the

optimal value in SSOM and then select the appropriate spare

parts based on these optimal results. The input values and

output values are taken from the quantification results as

shown in table II to IV. Specifically, the belief degree α is 0.80,

which means that the target DMU could meet the restrictions

with the probability of 0.80. The optimal results solved by the

SSOM is shown in table V.

According to the ranking criteria, the basic ranking order

is DMU4, DMU5, DMU 6, DMU7, DMU8, DMU9, DMU10,

DMU1, DMU2, DMU3, in which DMU4 to DMU10 are

equally important. Based on the ranking order, the basic

inventory policy is to store item 4 to item 10. Moreover,

we could distinguish the equally important items by a single

index. For example, cost is an important factor in the inventory

management. Priority is usually given to low-cost items. Then

the ranking order in terms of cost could be given as follows:

DMU9, DMU10, DMU 7, DMU6, DMU8, DMU4, DMU5. The

inventory policy could be adjusted based on the new ranking

order when the budget is limited.

VII. CONCLUSIONS

We presented a stochastic DEA model for optimization

under uncertainty, developed equivalent deterministic models

to overcome difficulty in solving non-linear programming and

then applied our approach to address the problem of optimiz-

ing the inventory policy of spare parts varieties. We proposed

a comprehensive index system from the perspective of the

product life-cycle process, which consisted of design factors,

operation factors and support factors. Then we established a

stochastic DEA model called SSOM considering the uncertain

nature in parameters to select spare parts varieties with the

constraints of multi-criteria. Some algorithms were employed

to obtain the equivalent deterministic model of SSOM. In

particular, the equivalent deterministic model of normal dis-

tributions was discussed. Finally, we applied our approach

on a depot which serves eight airplanes for illustration and

provided reasonable inventory management proposals based

on the optimal results. We also provided a single criterion for

equally important DMUs in terms of cost.

Decision makers can assign different values of belief degree

α to different factors in terms of actual demand, which keeps

the same for all random factors in the current model. Although

the model in this paper deals with the optimization problem in

spare parts varieties, it is a general model and can be applied

in the other fields of multi-criteria optimization where ran-

dom factors need to be considered. In actual implementation,

decision makers can simplify the model as needed.
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TABLE II
QUANTIFICATION RESULTS OF QUALITATIVE INDEXES

Number E G A P
Item 1 7 7 3 3
Item 2 1 5 3 1
Item 3 9 7 3 1
Item 4 7 7 1 3
Item 5 5 9 1 3
Item 6 3 1 1 1
Item 7 7 5 1 3
Item 8 7 5 1 3
Item 9 7 7 3 3
Item 10 5 3 3 3

TABLE III
QUANTIFICATION RESULTS OF DETERMINISTIC INDEXES

Number Z N S L(day) C(million)
Item 1 6 12 8 16 0.7
Item 2 6 4 8 8 0.9
Item 3 8 2 8 8 0.5
Item 4 2 1 8 8 3.7
Item 5 2 1 8 8 9.57
Item 6 5 3 8 7 0.7
Item 7 7 19 8 7 0.4
Item 8 15 25 8 7 1.2
Item 9 4 8 8 10 0.2
Item 10 6 4 8 10 0.3

TABLE IV
DISTRIBUTIONS OF RANDOM VARIABLES

Number T (h) F (h) W (h) M (h) D(h)
Item 1 N ( 11, 0.78 ) N ( 49103, 1054) N (60724, 1067.6) N ( 14.5, 2.77) N ( 7.3, 0.83)
Item 2 N ( 7.9, 0.46) N (134081 ,1659.5) N (159089, 1089.7) N (22.0, 3.02 ) N ( 9.9, 2.02)
Item 3 N ( 0.5, 0.25) N ( 78495,1347 ) N (239800 , 3409.9) N ( 17.6, 2.97 ) N ( 3.7, 0.87)
Item 4 N ( 20, 0.38) N ( 50466,1289 ) N (678006 , 4590.6) N (3.5 , 1.33) N ( 11.4, 1.73)
Item 5 N ( 4.5, 1.32) N (154077,2531.9 ) N (149800 , 2063.2 ) N ( 11.0, 0.80) N ( 7.8, 0.96)
Item 6 N (2.7, 0.35) N (70290, 1356.8) N (132079, 1340.7) N (2.5, 0.46) N (12.1, 0.98)
Item 7 N (5.9, 2.32) N (130839, 1567.5) N (4765000, 3985.7) N (10.5, 1.65) N (15.6, 2.86)
Item 8 N (18.6, 5.22) N (93675, 1029.6) N (158900, 2183.4) N (16.7, 2.77) N (13.6, 2.18)
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Belief reliability is a newly developed, model-based reliability metric which considers both

what we know (expressed as reliability models) and what we don’t know (expressed as

epistemic uncertainty in the reliability models) about the reliability. In this paper, we show

that due to the explicit representation of epistemic uncertainty, belief reliability should not

be regarded as a probability measure; rather, it should be treated as an uncertain measure

in uncertainty theory. A minimal cut set-based method is developed to calculate the belief

reliability of coherent systems. A numerical algorithm is, then, presented for belief reliabil- 

ity analysis based on fault tree models. The results of application show that the developed

methods require less computations than the structure function-based method of classical

reliability theory.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Modern reliability engineering is increasingly looking at the model-based methods (cf. physics-of-failure (PoF) methods 

[5] , structural reliability methods [6] , etc.), where reliability is predicted exploiting deterministic failure behavior models 

whose parameter variations are assumed to be the only source of uncertainty [37] . In practice, however, apart from the 

random variations in the model parameters (often referred to as aleatory uncertainty [1] ), the predicted reliability is also 

subject to the influence of epistemic uncertainty due to incomplete knowledge on the degradation and failure processes 

[20] : for example, the developed failure behavior model might not be able to accurately describe the actual failure process; 

besides, the precise values of the model parameters might not be accurately estimated [2,4] , etc. In most existing model- 

based reliability assessment methods, however, the effect of epistemic uncertainty has not been considered. 

Recently, a new metric of reliability, the belief reliability, has been defined to explicitly account for epistemic uncertainty 

in model-based reliability analysis and assessment [10,35,37] . The new reliability metric integrates the contributions of de- 

sign margin, aleatory uncertainty and epistemic uncertainty and provides a more comprehensive and systematic description 

of reliability. Zeng et al. [37] presented a framework to evaluate the belief reliability where epistemic uncertainty is quan- 

tified by the effectiveness of the engineering analysis and assessment activities that contribute to the state of knowledge 

on the failure causes and processes. Belief reliability has been applied successfully on the reliability evaluation of hydraulic 

servo-actuators [35,37] , DC regulated power supplies [10] and printed circuit boards [17] , all of which are subject to the 

influence of epistemic uncertainty. 
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Currently, the belief reliability of a component or a system can only be evaluated from its definition (i.e., based on design 

margin, aleatory uncertainty and epistemic uncertainty) [35] . In practice, we often need to calculate the belief reliability of 

a system based on the structure of the system and the belief reliabilities of its components (referred to as system reliability 

analysis in conventional reliability theories [31] ). To address this problem, a mathematical theory should be determined 

as the mathematical foundation of belief reliability, based on which the system belief reliability analysis method can be 

developed. In literature, various mathematical theories have been used to describe epistemic uncertainty, e.g., probability 

theory (subjective interpretation [7] ), evidence theory [29] , possibility theory [8] and uncertainty theory [26] , etc. Kang et al. 

[18] reviewed the theories and concluded that among them, uncertainty theory is the most suitable one for modeling belief 

reliability since it satisfies the Duality Axiom and adopts minimum operation as the Product Axiom, which are two essential 

requirements for a mathematical theory qualified to describe reliability under the influence of epistemic uncertainty. If either 

requirement is violated, misleading results might be reached when belief reliability is applied in practical applications (see 

Section 3.2 for a detailed discussion). 

Uncertainty theory, proposed by Liu in 2007 [21] and refined by Liu in 2010 [24] , is a branch of axiomatic mathematic 

founded on four axioms, the Normality, Duality, Subadditivity and Product Axiom. Currently, uncertainty theory has been 

widely applied in various fields, including portfolio selection [38] , network science [14] , option pricing [16] , graph theory 

[13] , transportation [32] , supply chain [15] , etc. The research of reliability in uncertainty theory started from [23] , where Liu 

defined the reliability index and showed how to calculate the system reliability index from the system structure functions. 

In [27] , the reliability indexes for redundant systems were calculated for the case in which the lifetimes of the components 

are uncertain variables. Zeng et al. [36] defined time-static and time-variant reliability in the context of uncertainty theory 

and developed calculation methods for the reliability indexes. Wen and Kang [30] developed an approach to calculate the 

reliability index when both uncertain variables and random variables are considered. Gao and Yao [12] investigated the im- 

portance index in the context of uncertainty theory. Age replacement and block replacement policies were also investigated 

with lifetimes described as uncertain variables [19,39,40] . 

Most existing system reliability analysis methods in uncertainty theory are based on structure functions (e.g., see [23,30] ). 

Since they require enumerating all the possible combination of system states, the computational efficiency of the structure 

function-based methods are often unsatisfactory, especially for large and complex systems. In a previous study, minimal 

cut sets have been used to alleviate the computational burdens of the structure function-based methods [36] . However, the 

method developed in [36] requires independence among the minimal cut sets, which is a strong condition and restricts 

its application. In this paper, we show that the restriction is unnecessary and develop a minimal cut set-based method to 

calculate the belief reliability for a system with independent components. 

The rest of this paper is organized as follows. Section 2 reviews the definition of belief reliability. In Section 3 , we 

justify the choice of uncertainty theory as the mathematical foundation of belief reliability and give the definition of belief 

reliability in the context of uncertainty theory. Then, a system belief reliability analysis method is developed based on 

minimal cut sets in Section 4 . In Section 5 , a numerical algorithm is presented for belief reliability analysis based on fault 

tree models. The paper is concluded in Section 6 with discussions on possible future research directions. 

2. Definition of belief reliability

In traditional model-based reliability methods, it is assumed that the failure behavior of a component or system is char- 

acterized by its performance margin m , which is modeled by: 

m = g m 

( x ) , (1) 

where m ≤0 indicates that the component or system fails and m > 0 indicates normal functioning; g m 

( · ) is developed by 
modeling the failure process [34] . Given the probability density functions of the input variables x , denoted by f X ( x ) , the 

reliability index can be calculated as 

R p = P r ( g m 

( x ) > 0 ) = 

∫ 
· · ·

∫ 
g m ( x ) > 0

f X ( x )d x . (2) 

To differentiate it from belief reliability, the reliability index in (2) is referred to as probabilistic reliability in this paper. 

In the model-based reliability methods, a fundamental assumption is that, the reliability model is correct and accurate, 

so that all the uncertainty comes from the random variations in x (aleatory uncertainty). The validity of such an assumption 

heavily depends on the state-of-knowledge we have on the failure process. In a lot of practical applications, however, due to 

the limitation of the knowledge, the models in (1) and (2) might not be able to accurately capture the actual failure process. 

Besides, the precise values of the model parameters might not be accurately known to us. Therefore, the predicted reliability 

index is subject to an additional source of uncertainty, which arises from lack of knowledge and is referred to as epistemic 

uncertainty [41] . 

Belief reliability was proposed as a metric of reliability that explicitly accounts for epistemic uncertainty in reliability 

analysis and assessment [10,35,37] . Note that in (1) and (2) , the probabilistic reliability R p can be viewed as determined 

by deterministic designs and aleatory uncertainty in the design parameters. Deterministic designs are quantified by design 

margin m d : 

m d = g m 

( x N ) (3) 
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Fig. 1. Epistemic uncertainty effect on the aleatory distribution of the performance margin (Adapted from [37] ).

where x N is the nominal values of the parameters. Aleatory uncertainty is measured by F a , the factor of aleatory uncertainty, 

which is defined by: 

F a = 

m d

Z 1 −R p 

(4) 

where R p is given by (1) and (2) ; Z α is the value of the inverse cumulative distribution function of a standard normal 

distribution evaluated at α. Let us define equivalent performance margin M E as: 

M E = m d + εa , (5) 

where m d is the design margin in (3) and εa ∼ Normal (0 , F 2 a ) quantifies the effect of aleatory uncertainty. It is easy to verify 

that M E ∼ Normal (m d , F 
2 
a ) and the probabilistic reliability R p can be calculated as the probability that M E > 0, as shown in 

Fig. 1 (a). 

In belief reliability, epistemic uncertainty is described by introducing a factor of epistemic uncertainty, denoted by F e , 

whose value is related to the state-of-knowledge of the failure processes and is measured based on the effectiveness of the 

engineering analysis and assessment activities for component and system reliability performance characterization [10,37] . 

An adjustment factor εe ∼ Normal (0 , F 2 e ) is introduced to quantify the effect of epistemic uncertainty on the equivalent 

performance margin: 

M E = m d + εa + εe . (6) 

Eq. (6) indicates that epistemic uncertainty introduces additional dispersion to the aleatory distribution of the equivalent 

performance margin, as shown in Fig. 1 (b). Considering (6) and the normality assumption on εa and εe , belief reliability is 

defined as: 
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Definition 1 (Belief reliability [37] ) . The reliability metric 

R B = �N 

( 

m d√ 

F 2 a + F 2 e 

)
(7) 

is defined as belief reliability, where �N ( · ) is the cumulative distribution function of a standard normal random variable. 

It can be shown from (7) that as F e → 0, R B → R p , where R p denotes the conventional model-based reliability metric 

calculated under the same conditions. This is natural, since F e → 0 indicates that there is no epistemic uncertainty and, 

therefore, the failure behavior can be accurately determined by the reliability models in (1) and (2) . 

In practical application, we always have m d > 0 and F e ≥0 [37] . It is easy to verify from (7) that 

R B ≤ R p , (8) 

which shows that using belief reliability yields a more conservative evaluation result than using the probability-based reli- 

ability metric. The reason is that belief reliability considers the effect of insufficient knowledge on the estimated reliability, 

while the probability-based reliability metric implicitly assumes that knowledge is complete. It is the additional uncertainty 

caused by the insufficient knowledge that reduces our confidence on the reliability estimation. 

3. Uncertainty theory as the mathematical foundation of belief reliability

In this section, we discuss the mathematical foundations of belief reliability and show that the new reliability metric 

should be modeled by uncertainty theory. Uncertainty theory is reviewed in Section 3.1 . In Section 3.2 , we explain the 

reasons to choose uncertainty theory as the mathematical foundation, and then define belief reliability as an uncertain 

measure. 

3.1. Preliminaries of uncertainty theory 

The first important concept in uncertainty theory is that of an event. Let � be a nonempty set, and L a σ -algebra over 
�. Each element � in L is called an event. 

In uncertainty theory, the belief degree of an event is measured by its uncertain measure. An uncertain measure is a set 

function M from L to [0, 1] satisfying the following three axioms [21] : 

Axiom 1 (Normality Axiom [21] ) . M{ �} = 1 for the univeral set �. 

Axiom 2 (Duality Axiom [21] ) . M{ �} + M{ �c } = 1 for any event �. 

Axiom 3 (Subadditivity Axiom [21] ) . For every countable sequence of events �1 , �2 , ���, 

M 

{ 

∞ ⋃ 

i =1
�i 

}
≤

∞ ∑ 

i =1
M{ �i } . (9) 

The triplet (�, L , M ) is called an uncertainty space [21] . A product uncertain measure was defined by Liu [22] in order 

to obtain an uncertain measure of a compound event, thus producing the fourth axiom of uncertainty theory: 

Axiom 4 (Product Axiom [22] ) . Let (�k , L k , M k ) be uncertainty spaces for k = 1 , 2 , · · · The product uncertain measure M is 

an uncertain measure satisfying 

M 

{ 

∞ ∏ 

k =1
�k 

}
= 

∞ ∧ 

k =1
M k { �k } (10) 

where �k are arbitrarily chosen events from L k for k = 1 , 2 , · · · , respectively. 

An uncertain variable is a measurable function ξ from an uncertainty space (�, L , M ) to the set of real numbers, i.e. , 

for any Borel set B of real numbers, the set { ξ ∈ B } = { γ ∈ �| ξ (γ ) ∈ B } is an event [21] . 
In practice, an uncertain variable is described by the uncertainty distribution [21] , defined by 

�(x ) = M{ ξ ≤ x } , ∀ x ∈ 
 . (11) 

An uncertainty distribution is said to be regular if its inverse function �−1 (·) exists and is unique for each α ∈ (0, 1) [24] . 

The uncertain variables ξ1 , ξ2 , . . . , ξm 

are said to be independent if 

M 

{ 

m ⋂ 

i =1 
(ξi ∈ B i ) 

}
= 

m ∧ 

i =1
M{ ξi ∈ B i} (12) 

for any Borel sets B 1 , B 2 , ���, B m 

of real numbers [22] . 
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Liu [24] developed operation laws for uncertain variables so that the distribution of functions of independent uncertain 

variables can be achieved. Let ξ 1 , ξ 2 , ���, ξ n be independent uncertain variables with regular uncertainty distributions �1 , 

�2 , ���, �n , respectively. If the function f ( x 1 , x 2 , ���, x n ) is strictly increasing with respect to x 1 , x 2 , ���, x m 

, and strictly 

decreasing with respect to x m +1 , x m +2 , · · · , x n , then, the uncertain variable ξ = f (ξ1 , ξ2 , · · · , ξn ) has an inverse uncertainty 
distribution 


−1 ( α) = f 
(
�−1 

1 ( α) , �−1 
2 ( α) , · · · , �−1 

m 

( 1 − α) , �−1
m +1 ( 1 − α) , · · · , �−1 

n ( 1 − α)
)
. (13) 

3.2. Belief reliability as an uncertain measure 

Belief reliability measures the degree to which we believe that a component or a system can perform its function as 

designed. In this subsection, we compare four mathematical theories commonly used to model belief degrees, probability 

theory (subjective interpretation [7] ), evidence theory [29] , possibility theory [8] and uncertainty theory [26] , and choose 

among them the most appropriate one as the mathematical foundation for belief reliability. 

In practice, how to calculate the belief degree of the intersection of events (more formally, the product event) is an 

important issue, since it is the basis of system reliability calculations. Based on how the belief degree of the intersection of 

events is calculated, the four theories can be divided into two groups. Probability theory and evidence theory comprise the 

first group, where the belief degree of the intersection of events is calculated by the product of the individual belief degrees 

(assuming independence among the individual events). 

According to Liu [25] , a premise of using the product operation to calculate the belief degree of the intersection of 

events is that the estimated belief degree for each individual event is close enough to the long-run cumulative frequency. 

As shown in (8) , however, belief reliability is a more conservative reliability measure than the probabilistic reliability. If 

we use probability theory or evidence theory to model belief reliability, the conservatism in the component level will be 

distorted by the product operation, which might lead to counter-intuitive results when calculating system belief reliability. 

To illustrate this point, consider the following example. 

Example 1. Consider a series system of 20 0 0 components. Suppose for each component, m d = 9 and F a = 0 . It is easy to 

verify that both the component and the system are unlikely to fail. 

When using belief reliability as the reliability measure, we have to consider the effect of epistemic uncertainty, by eval- 

uating our state of knowledge. Suppose for each component, we have F e = 3 . Then, from (7) , the belief reliability of each 

component is R B = 0 . 9987 . If we regard belief reliability as a probability measure, the system belief reliability should be 

calculated by the product of the component belief reliabilities: 

R B,S = R 20 0 0 B = 0 . 9987 20 0 0 = 0 . 074 . (14) 

Based on the evaluation result in (14) , the system is highly unreliable, which contradicts with our intuition. 

Example 1 shows that to model belief reliability, we need a mathematical theory whose operation law of product events 

can compensate for the conservatism in the component-level belief reliability evaluation. Possibility theory provides an 

alternative solution by assuming that the product belief degree is the minimum one among all the individual events [8,33] . 

If we regard the component belief reliabilities in Example 1 as a possibility measure, according to [8] , the system belief 

reliability is given by 

R B,S = 

20 0 0 ∧ 

i =1
R B,i = 0 . 9987 , (15) 

which avoids the counter-intuitive result in Example 1 . However, regarding belief reliability as a possibility measure intro- 

duces an issue: possibility measure does not follow the duality axiom, which might lead to other counter-intuitive results 

[24] . For instance, see Example 2 . 

Example 2. Assume that belief reliability R B is a possibility measure. A possibility measure � has the following properties 

[8] : 

• �(�) = 1 , where � is the universal set, and

• �(U ∪ V ) = �(U) ∨ �(V ) , for any pair of disjoint sets U and V .

Since ”working” and ”failure” are two disjoint sets and their union is the universal set, from the above axioms, it is easy

to show that for a given component or a system, either the reliability R B = 1 or the unreliability R B = 1 which will confuse 

the decision maker when applied in practice. 

From Examples 1 to 2 , we can see that to model belief reliability, we need a mathematical theory which can compensate 

the conservatism in the individual belief degree and satisfy the duality axiom. Compared to probability theory, uncertainty 

theory differs in the Product Axiom, where a minimum operator is used instead of the product operator, indicating that 

the uncertainty theory is capable to compensate for the extra dispersion induced by epistemic uncertainty. Compared to 

possibility theory, uncertainty theory follows the Duality Axiom, which prevents the counter-intuitive examples such as that 

in Example 2 . Hence, belief reliability is assumed to be an uncertain measure in this paper. 
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Definition 2 (Mathematical definition of belief reliability) . Let the universal set � = { γ1 , γ2 } , where γ 1 represents the work- 

ing state of a system or component, while γ 2 represents the failure state. Then, belief reliability R B is defined as the uncer- 

tain measure of the event �1 = { γ1 } ,
R B = M { �1 } . (16) 

Remark 1. From the Duality Axiom, we can calculate the belief unreliability: 

R B = M { �2 } = 1 − R B , (17) 

which can also be seen from Fig. 1 , since the areas of failure region and safe region sum up to 1. 

4. Minimal cut set theorem

In this section, we show how to calculate the belief reliability of a coherent system by proving the Minimal Cut Set 

Theorem. Coherent system is the most widely applied system model in reliability theory, which describes the logic of binary 

monotone systems whose components are all relevant [3,28] . Commonly encountered examples of coherent systems include 

series systems, parallel systems, k-out-n:G systems, etc. 

Let ξ i , 1 ≤ i ≤n and ξ denote the state of the i th component and of the system, respectively, where 

ξi = 

{
1 , if the i th component is working , 
0 , if the i th component fails . 

ξ = 

{
1 , if the system is working, 
0 , if the system fails . 

(18) 

The boolean variables ξ and ξ i , 1 ≤ i ≤n are referred to as state variables for the system and the components, respectively. 

In coherent systems, ξ is a function of ξ i , 1 ≤ i ≤n : 

ξ = φ( x ξ ) = φ(ξ1 , ξ2 , · · · , ξn ) , (19) 

where x ξ = [ ξ1 , ξ2 , · · · , ξn ] is the state vector of the components. The function φ( · ) in (19) is the structure function of the 
coherent system. 

The state variables ξ , ξ i , 1 ≤ i ≤n are all Boolean uncertain variables. Since ξ can be determined by ξ 1 , ξ 2 , ���, ξ n via 

the structure function, ξ is a function of uncertain variables. Hence its uncertainty distribution can be obtained via the 

operation laws of uncertain variables [26] . Following the operation law for Boolean uncertain variables, Liu [23] proved the 

Reliability Index Theorem for coherent systems: 

Theorem 1 (Reliability Index Theorem [23] ) . Assume that a system contains uncertain elements ξ 1 , ξ 2 , ���, ξ n and has a 

structure function φ. If ξ 1 , ξ 2 , ���, ξ n are independent uncertain elements with reliability indices a 1 , a 2 , ���, a n , respectively, 
then, the system reliability index a is 

a = 

⎧⎨
⎩ 

sup 
φ(x 1 ,x 2 , ··· ,x n )=1 

min 
1 ≤i ≤n

νi (x i ) , if sup 
φ(x 1 ,x 2 , ··· ,x n )=1 

min 
1 ≤i ≤n

νi (x i ) < 0 . 5 

1 − sup 
φ(x 1 ,x 2 , ··· ,x n )=0 

min 
1 ≤i ≤n

νi (x i ) , if sup 
φ(x 1 ,x 2 , ··· ,x n )=1 

min 
1 ≤i ≤n

νi (x i ) ≥ 0 . 5 
(20) 

where x i , i = 1 , 2 , · · · , n take value either 0 or 1, and ν i are defined by 

νi (x i ) = 

{
a i , if x i = 1 

1 − a i , if x i = 0 . 
(21) 

The proof of Theorem 1 can be found in [23] . 

Directly applying Theorem 1 to calculate belief reliability of a coherent system requires enumerating all possible com- 

binations of ξ i , which is tedious and hard to apply in practice. In order to simplify the evaluation processes, we develop a 

system belief reliability evaluation method for coherent systems based on the concept of minimal cut sets. 

Definition 3 (Minimal cut set) . Suppose x = [ x 1 , x 2 , · · · , x n ] is the state vector of a coherent system whose structure function 

is φ. A vector x a is called a minimal cut vector if φ( x a ) = 0 and φ( x b ) = 1 , ∀ x b > x a . By x b > x a , we mean x b,i ≥ x a,i , 1 ≤ i ≤
n and there is at leat one i , x b,i > x a,i . 

Suppose x C is a minimum cut vector. Let C(x C ) = { i : x i = 0 } . Then, C ( x C ) is referred to as a minimum cut set.

A minimal cut set is the smallest combination of components which will cause the systems failure if they all fail. In [36] , 

the authors used minimal cut sets to reduce the computational costs in system belief reliability calculations. However, their 

method requires a strict assumption that all the minimal cut sets are independent. In this paper, we show that the restriction 

is unnecessary, by proving the Minimal Cut Set Theorem, which only requires independence among the components. 

Theorem 2 (Minimal Cut Set Theorem) . Consider a coherent system comprising n independent components with belief reliabili- 

ties R B,i , i = 1 , 2 , . . . , n . If the system contains m minimal cut sets, C 1 , C 2 , . . . , C m 

, then, the system belief reliability is 

R B,S = 

∧ 

1 ≤i ≤m 

∨ 

j∈ C i 
R B, j . (22) 
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Proof. Without loss of generality, let us assume that the i th minimal cut set C i contains n i components. Let us also assume 

R B, 11 ≥ R B, 12 ≥ · · ·R B, 1 j ≥ · · · ≥ R B, 1 n 1 , 

R B, 21 ≥ R B, 22 ≥ · · ·R B, 2 j ≥ · · · ≥ R B, 2 n 2 , 

.. . 

R B,m 1 ≥ R B,m 2 ≥ · · ·R B,mj ≥ · · · ≥ R B,mn m , 

and 

R B, 11 ≥ R B, 21 ≥ · · ·R B, j1 ≥ · · · ≥ R B,m 1 , 

where R B, ij denotes the belief reliability of the j th component in the i th minimal cut set. In order to prove (22) , we only 

have to prove 

R B,S = R B,m 1 . (23) 

Eq. (23) comes from the fact that R B , 11 , R B , 21 , ���, R B, m 1 are the maximum component belief reliabilities for each minimal 

cut set, and R B, m 1 is the minimum among R B , 11 , R B , 21 , ���, R B, m 1 . 

The proof breaks into two cases: 

1. If R B, m 1 < 0.5:

Since φ(x 1 , x 2 , · · · , x n ) = 1 indicates that at least one component in each minimal cut set is working, it is easy to verify

that

sup 
φ(x 1 ,x 2 , ··· ,x n )=1 

min 
1 ≤i ≤n

νi (x i ) = min 
1 ≤i ≤m

{
max 

φi (x 1 ,x 2 , ··· ,x n i )=1 
min 
1 ≤ j≤n i 

ν(x i j ) 

}
(24) 

where φi (x 1 , x 2 , · · · , x n i ) = max 1 ≤ j≤n i 
x i j .

Since R B,m 1 ≥ R B,m 2 ≥ · · ·R B,mj ≥ · · · ≥ R B,mn m , we have 

max 
φm (x 1 ,x 2 , ··· ,x n m )=1 

min 
1 ≤ j≤n m 

ν(x i j ) = min 

(
R B,m 1 , min 

2 ≤ j≤n m 
(1 − R B,mj ) 

)
= R B,m 1 . (25) 

For 1 ≤ i ≤ m − 1 , if R B, i 1 ≥0.5, from Lemma 1 in Appendix A , we have 

max 
φi (x 1 ,x 2 , ··· ,x n i )=1 

min 
1 ≤ j≤n i 

ν(x i j ) ≥ 0 . 5 > R B,m 1 ; (26) 

if R B, i 1 < 0.5, then, like (25) , we can prove that 

max 
φi (x 1 ,x 2 , ··· ,x n i )=1 

min 
1 ≤ j≤n i 

ν(x i j ) = R B,i 1 ≥ R B,m 1 . (27) 

Substituting (26) and (27) into (24) , we have 

sup 
φi (x 1 ,x 2 , ··· ,x n i )=1 

min 
1 ≤ j≤n i 

ν(x i j ) = R B,m 1 < 0 . 5 . (28) 

Note that belief reliability is a reliability index. Then, from Theorem 1 , R B,S = R B,m 1 . 

2. If R B, m 1 ≥0.5:

Since R B , 11 ≥R B , 21 ≥ ���R B, j 1 ≥ ��� ≥R B, m 1 ≥0.5, from Lemma 1 , we have 

sup 
φ(x 1 ,x 2 , ··· ,x n i )=1 

min 
1 ≤ j≤n i 

νi (x i ) ≥ 0 . 5 . (29) 

Since φi (x 1 , x 2 , · · · , x n i ) = 0 indicates that at least in one minimal cut set, all the components fail, we have

sup 
φ(x 1 ,x 2 , ··· ,x n )=0 

min 
1 ≤i ≤n

ν(x i ) = max 
1 ≤i ≤m 

min
1 ≤ j≤n i 

(1 − R B,i j ) 

= max 
1 ≤i ≤m

(1 − R B,i 1 ) = 1 − R B,m 1 . (30) 

Then, from Theorem 1 , 

R B,S = 1 − sup 
φ(x 1 ,x 2 , ··· ,x n )=0 

min 
1 ≤i ≤n

ν(x i ) = R B,m 1 . (31) 

�
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Example 3 (Belief reliability of a series system) . Consider a series system comprising n independent components with belief 

reliabilities R B,i , i = 1 , 2 , . . . , n . It is easy to show that the system has n minimal cut sets, C 1 = { 1 } , C 2 = { 2 } , . . . , C n = { n } .
Therefore, from Theorem 2 , the belief reliability of the system is 

R B,S = 

∧ 

1 ≤i ≤n

R B,i . (32) 

Ref. [23] also calculates the belief reliability of a series system using the Reliability Index Theorem. The result in 

(32) is the same as that from using Theorem 1 ( [23] ). However, using Theorem 1 requires n ·2 n comparisons, while using 
Theorem 2 requires only n comparisons. Therefore, the computational costs can be greatly reduced by using the Minimal 

Cut Set Theorem. 

Example 4 (Belief reliability of a parallel system) . Consider a parallel system comprising n independent components with 

belief reliabilities R B,i , i = 1 , 2 , . . . , n . It is easy to show that the system has one minimal cut set, C 1 = { 1 , 2 , . . . , n } . Therefore,
from Theorem 2 , the system belief reliability is 

R B,S = 

∨ 

1 ≤i ≤n

R B,i . (33) 

Ref. [23] also calculates the belief reliability of a parallel system using the Reliability Index Theorem. The result in 

(33) is the same as that from using Theorem 1 ( [23] ). However, using Theorem 1 requires n ·2 n comparisons, while using 
Theorem 2 requires only n comparisons. Therefore, the computational costs can be greatly reduced by using the Minimal 

Cut Set Theorem. 

Example 5 (Belief reliability of a k-out-n:G system) . Consider a k-out-n:G system comprising n independent components 

with belief reliabilities R B,i , i = 1 , 2 , . . . , n . It is easy to show that the system has C (k +1) n minimal cut sets. Each minimal cut

set contains k + 1 components arbitrary chosen from the n components. Therefore, from Theorem 2 , the belief reliability of 

the system is 

R B,S = R B,k . (34) 

Ref. [23] also calculates the belief reliability of a k-out-n:G system using the Reliability Index Theorem. The result in 

(34) is the same as that from using Theorem 1 ( [23] ). However, using Theorem 1 requires n ·2 n comparisons, while using 
Theorem 2 requires only n comparisons. Therefore, the computational costs can be greatly reduced by using the Minimal 

Cut Set Theorem. 

5. Fault tree analysis using belief reliability

In this section, we show how to calculate system belief reliability based on fault tree models. For this, we first show that 

Theorem 2 also applies to cut sets. A vector x CS is a cut vector if φ( x CS ) = 0 . Then, CS = { i : x CS,i = 0 } is defined as a cut
set. All minimal cut sets are cut sets; whereas, a cut set might be necessarily be a minimal cut set since it might contain 

redundant elements. If a cut set CS comprises of all the elements of a minimal cut set C and some redundant elements, C is 

said to be contained in CS . 

Theorem 3 (Cut Set Theorem) . Suppose that a coherent system has m minimal cut set CS 1 , CS 2 , ���, CS m 

and (l − m ) cut sets 

C S m +1 , C S m +2 , · · · , C S l that contain some minimal cut sets. Then, the system belief reliability can be calculated by 

R B,S = 

∧ 

1 ≤i ≤l 

∨ 

j∈ CS i 
R B, j . (35) 

Proof. Let 

R B,MCS = 

∧ 

1 ≤i ≤m 

∨ 

j∈ CS i 
R B, j . (36) 

Without loss of generality, let us assume that CS m +1 contains CS 1 and belief reliabilities of the redundant components are 
R B,R, 1 ≥ R B,R, 2 ≥ R B,R,n R 

. Let R B , 1 denote the highest belief reliability among the components in CS 1 .

If R B, R , 1 ≤R B , 1 , immediately we have 

R B,MCS = 

∧ 

1 ≤i ≤m +1 

∨ 

j∈ CS i 
R B, j . (37) 

If R B, R , 1 > R B , 1 , (37) also holds since ∨ 

j∈ CS m +1 
R B, j = R B,R, 1 > R B, 1 . (38) 
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Fig. 2. Schematic diagram of the F-18 LLEF [9] .

1 32

4 5 6 7

8 5 9 6

E3 E4

LLEF control system failure

E2E1

Fig. 3. The fault tree of the F-18 LLEF [9] .

Similarly, we can prove that ∧ 

1 ≤i ≤l 

∨ 

j∈ CS i 
R B, j = R B,MCS . (39) 

From Theorem 2 , R B,MCS = R B,S . Hence, the theorem is proved. �

The cut sets required in (35) can be enumerated from the fault tree model using the MOCUS algorithm [11] . System 

belief reliability can, then, be calculated by Algorithm 1 . 

An engineering system, the left leading edge flap (LLEF) control subsystem of the F-18 air fighters [9] , is used to demon- 

strate the developed system belief reliability analysis method. The schematic of the system is given in Fig. 2 , where FCC 

represents flight control computer, CH represents channel, HSA represents hydraulic servo- actuator, LLEF represents left 

leading edge flap and RLEF represents right leading edge flap [9] . 

The failure behavior of the system can be described by a fault tree, as shown in Fig. 3 [9] . In Fig. 3 , the basic events 1–9 

represent the failure of HSA-A, left asymmetry control unit, LLEF, CH1, CH2, CH3, CH4, FCC-A and FCC-B, respectively. 

The belief reliability of the components can be evaluated using the procedures in [37] . Suppose the component belief 

reliabilities are R B, 1 = 0 . 9688 , R B, 2 = 0 . 9200 , R B, 3 = 0 . 9500 , R B, 4 = 0 . 90 0 0 , R B, 5 = 0 . 80 0 0 , R B, 6 = 0 . 880 0 , R B, 7 = 0 . 960 0 , R B, 8 = 

0 . 970 0 , R B, 9 = 0 . 950 0 , respectively. From Algorithm 1 , the belief reliability of the system is 

R B,S = R B, 1 ∧ R B, 2 ∧ R B, 3 ∧ 

( ( R B, 5 ∧ R B, 8 ) ∨ ( R B, 6 ∧ R B, 9 ) ) ∧ 

( R B, 4 ∨ R B, 5 ∨ R B, 6 ∨ R B, 7 ) 

(40) 

Then, from (40) , the belief reliability of the LLEF control system is R B,S = R B, 6 = 0 . 8800 . 
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Algorithm 1 Belief reliability analysis based on fault tree. 

1: Do a depth-first-search for the logic gates in the fault tree. 

2: For each logic gate, calculate the belief reliability for its output event: 

R B,out = 

⎧ ⎪⎨
⎪⎩

∧
1 ≤i ≤n

R B,in,i , for an OR gate, 

∨ 

1 ≤i ≤n

R B,in,i , for an AND gate, 
(39) 

3: R B,S ← R B,out,T E , where T E represents top event. 

4: return R B,S . 

The structure function-based method is also used to evaluate the system belief reliability. To do this, all the possible 

combinations of the system states need to be enumerated, which, in this case, are 2 9 = 512 states. Then, the system belief 

reliability is calculated based on (20) . The calculated system belief reliability is R B,S = 0 . 8800 , which is the same as the one 

from Algorithm 1 . According to (20) , the structure function-based method requires n × 2 n = 4608 comparisons, where n is 

the number of components. Algorithm 1 , however, requires only 10 comparisons according to (40) . The results demonstrate 

that using the developed methods can help to improve the computational efficiency of system belief reliability analysis. 

6. Conclusion

In this paper, belief reliability was defined as an uncertain measure in uncertainty theory, due to the explicit represen- 

tation of epistemic uncertainty. The Minimal Cut Set Theorem was proved, which shows how to calculate the belief relia- 

bility for coherent systems based on minimal cut sets. A system belief reliability analysis method is, then, developed based 

on fault tree models and applied on some numerical case studies. A comparison to the existing structure function-based 

method shows that the developed methods reduces the computational costs in system belief reliability analysis. 

In this paper, we only consider binary systems. Many practical systems, however, are multi-state. In the future, the belief 

reliability evaluation method will be extended to multi-state system models. Also, the belief reliability considered in this pa- 

per is independent of time. How to model the time-dependent belief reliability is another future research direction. Besides, 

it should be noted that the belief reliability analysis method developed in this paper assumes that the system reliability 

model is accurate. Epistemic uncertainty only exists in the component level. In practice, however, epistemic uncertainty 

might also affect system reliability model and should be considered in future researches. 
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Appendix A. Lemma 1 and its proof 

Lemma 1. Consider a coherent system comprising n independent components with belief reliabilities R B,i , i = 1 , 2 , · · · , n, where 

R B , 1 ≥R B , 2 ≥ ��� ≥R B, n . If the structure function of the system φ is: 

φ(x 1 , x 2 , · · · , x n ) = max 
1 ≤i ≤n

x i , (A.1) 

and there is at least one R B, i such that R B, i ≥0.5, then we have 

sup 
φ(x 1 ,x 2 , ··· ,x n )=1 

min 
1 ≤i ≤n

νi (x i ) ≥ 0 . 5 . (A.2) 

Proof. The proof breaks into two cases: 

1. If R B, n ≥0.5:

Since φ(1 , 1 , · · · , 1) = 1 , we have

sup 
φ(x 1 ,x 2 , ··· ,x n )=1 

min 
1 ≤i ≤n

νi (x i ) ≥ min 
1 ≤i ≤n

νi (1) = R B,n ≥ 0 . 5 . (A.3) 

2. If R n < 0.5:
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Without loss of generality, we assume that there exists a k, k ∈ [1 , n − 1] , such that R B, k ≥0.5. Since R n < 0.5, there exists 

a j ∈ ( k, n ), where R j ≥ 0 . 5 ≥ R j+1 . It is easy to verify that φ(x 1 , x 2 , · · · , x n ) = 1 where 

x i = 

{
1 , i = 1 , 2 , · · · , j 
0 , i = j, j + 1 , · · · , n. 

(A.4) 

Besides, for the x i , 1 ≤ i ≤n in (A.4) , we have 

min 
1 ≤i ≤n

νi (x i ) = min 

(
min 
1 ≤i ≤ j

ν j (1) , min 
j+1 ≤i ≤n

ν j (0) 

)
≥ 0 . 5 . (A.5) 

Therefore, 

sup 
φ(x 1 ,x 2 , ··· ,x n )=1 

min 
1 ≤i ≤n

νi (x i ) ≥ 0 . 5 . (A.6) 

�
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ABSTRACT Belief reliability is a new reliability metric based on the uncertainty theory, which aims to
measure system performance incorporating the influences from design margin, aleatory uncertainty, and
epistemic uncertainty. A key point in belief reliability is to determine the belief reliability distribution based
on the actual conditions, which, however, could be difficult when available information is limited. This paper
proposes an optimal model to determine the belief reliability distribution based on the maximum entropy
principle when kth moments of what can be obtained. An estimation method using linear interpolation and
a genetic algorithm is subsequently applied to the optimal model. When only the expected value and the
variance are available, the optimal results are in accordance with the maximum entropy principle. It could
be observed in the sensitivity analysis that the accuracy of the optimal results is a decreasing function of the
width of variances and an increasing function of the number of interpolation points. Therefore, researchers
could adapt to different widths of variances and requirements of accuracy by adjusting the number of
interpolation points. It could be concluded that this new method to acquire belief reliability distribution
is important in the application of belief reliability.

INDEX TERMS Belief reliability distribution, maximum entropy principle, uncertain variable, uncertain
distribution.

I. INTRODUCTION
With urgent requirements for the accuracy of the prod-
ucts reliability assessment, the treatment of uncertainties
has attracted much attention. Generally, uncertainties can be
classified into two types, aleatory uncertainty and epistemic
uncertainty. Aleatory uncertainty describes the uncertainty
inherent in the physical behavior of the system, and epistemic
uncertainty is attributable to the lack of data and informa-
tion. Probabilistic method can successfully deal with the
aleatory uncertainty however it has obvious drawbacks on the
treatment of epistemic uncertainty. In 2007, Liu [1] founded
uncertainty theory to deal with human’s subjective uncer-
tainty by belief degree mathematically and in 2010, Liu [2]
perfected it based on normality, duality, subadditivity and
product axioms. Based on uncertainty theory, Zeng et al. [3]
defined belief reliability as the uncertainty measure of the
system to perform specific functions within given time
under given operating conditions. Zeng et al. [4] devel-
oped an evaluation method for component belief reliability,

which incorporates the impacts from design margin, aleatory
uncertainty and epistemic uncertainty. The issue of quan-
tifying the effect from epistemic uncertainty is addressed
using a method, which is established based on the per-
formance of engineering activities related to reduce epis-
temic uncertainties [5], [6]. However, it is still challenging
to widely employ belief reliability in reliability engineer-
ing due to the scant methods to acquire belief reliability
distributions.

Belief reliability distribution is inherently the uncertainty
distribution applied in belief reliability. Researchers have
explored several methods to get uncertainty distributions.
Liu [2] designed uncertain statistics as a methodology for col-
lecting and interpreting experts’ experimental data by uncer-
tainty theory and then proposed a questionnaire survey for
collecting expert’s experimental data. Chen and Ralescu [7]
employed uncertain statistics to estimate the travel dis-
tance between Beijing and Tianjin and proposed B-spline
interpolation to fit a continuous uncertainty distribution.
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Gao and Yao [8] designed a procedure of the Delphi
method for determining the uncertainty distribution. Both the
B-spline interpolation and the Delphi method can adapt
to the cases where uncertainty distributions are unknown.
When the form of an uncertainty distribution is certain,
Liu [2] utilized the principle of the least squares to esti-
mate the parameters of the uncertainty distribution and
Wang and Peng [9] proposed a method of moments for calcu-
lating the unknown parameters of the uncertainty distribution.

However, in practice, only partial information about an
uncertain variable is available and there are infinite numbers
of uncertainty distributions that are in accordance with the
given information. In such cases, the existing methods cannot
determine its uncertainty distribution.

The entropy is a measurement of the degree of uncertainty.
For random cases, Jaynes [10] suggested choosing the dis-
tribution which has the maximum entropy. In uncertainty
theory, Liu [11] proposed the definition of uncertainty
entropy resulting from information deficiency to provide a
quantitative measurement for the degree of uncertainty of
uncertain variables. Chen and Dai [12] proved the maximum
entropy principle when the expected value and the variance
are finite. This paper will investigate the maximum entropy
method and propose an optimal model to estimate belief reli-
ability distribution based on the maximum entropy principle
when k-th moments can be obtained.
The paper is structured as follows. Some basic con-

cepts on uncertainty theory will be introduced in Section 2.
Subsequently, basic definitions on belief reliability and belief
reliability distribution will be provided and a model based on
the maximum entropy principle will be proposed to estimate
belief reliability distribution in Section 3. The estimation to
the proposed model will be discussed with linear interpola-
tion and genetic algorithm (GA) in Section 4. The proposed
model will be verified in Section 5 and a sensitivity analysis
will be conducted on the number of interpolation points and
thewidth of variances in the same section. The conclusions on
belief reliability distribution based on the maximum entropy
principle will be discussed in Section 6.

II. PRELIMINARIES
Uncertainty theory was founded by Liu [1] in 2007 and
refined by Liu [2] in 2010. Following that, uncertain
process [13], uncertain differential equations [13], uncer-
tain calculus [11] and uncertain programming [14] were
proposed. Uncertainty theory has been successfully applied
in various areas, including finance [15], reliability [8] and
graph [16]. Some basic concepts in uncertainty theory will
be stated in this section.

Let � be a nonempty set, and let L be a σ -algebra over �.
Each element � in � is called an event. Liu [1] defined an
uncertain measure by the following axioms:
Axiom 1 (Normality Axiom): M{�} = 1 for the universal

set �.
Axiom 2 (Duality Axiom): M{�} + M{�C } = 1 for any

event �.

Axiom 3 (Subadditivity Axiom): For every countable
sequence of events �1, �2, · · · , we have

M
{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i}, (1)

where
∞⋃
i=1

�i is the union of �i, i = 1, 2, · · · .
Furthermore, Liu [11] defined a product uncertain measure

by the fourth axiom:

M
{ ∞∏
i=1

�i

}
=

∞∧
i=1

Mi{�i} (2)

where Li are σ -algebras over �i, �i are arbitrarily chosen

events from Li for i = 1, 2, · · · , respectively, and
∞∏
i=1

�i is

the intersection of �i, i = 1, 2, · · · .
Definition 1 (See Liu [1]): Let � be a nonempty set, let

L be a σ -algebra over �, and letM be an uncertain measure.
Then the triplet (�,L,M) is called an uncertainty space.
Definition 2 (See Liu [1]): An uncertain variable is a

measurable function ξ from an uncertainty space (�,L,M)
to the set of real numbers, γ is the element in �, i.e., for any
Borel set B of real numbers, we have

{ξ ∈ B} = {γ ∈ �|g(γ ) ∈ B} ∈ L. (3)

Definition 3 (See Liu [1]): The uncertainty distribution �

of an uncertain variable ξ is defined by

�(x) = M{ξ ≤ x} (4)

for any real number x.
Example 1: An uncertain variable ξ is called normal vari-

able if it has a normal uncertainty distribution

�(x) =
(
1 + exp

(
π (μ − x)√

3σ

))−1

, x ∈ R (5)

denoted by N (μ, σ ) where μ and σ are real numbers
with σ > 0.
Definition 4 (See Liu [1]): Let ξ be an uncertain variable

with regular uncertainty distribution �(x). Then the inverse
function �−1(·) is called the inverse uncertainty distribution
of ξ .
Example 2: The inverse uncertainty distribution of normal

uncertain variable N (μ, σ ) is

�−1
x (α) = μ + σ

√
3

π
ln

α

1 − α
, (6)

where α is the belief degree.

III. BELIEF RELIABILITY AND ITS DISTRIBUTION MODEL
A. BASIC DEFINITIONS AND EXAMPLES
Definition 5 (Belief Reliability): Let a product state variable ξ

be an uncertain variable, and � be the feasible domain of
a product state. Then the belief reliability is defined as the
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uncertain measure that the product state is within the feasible
domain, i.e.,

RB = M{ξ ∈ �}. (7)

In Definition 5, the state variable ξ describes the product’s
behavior, while the feasible domain � is a reflection of
failure criteria. In reliability engineering, since the product’s
behavior and the failure criteria usually vary with time [17],
both ξ and � can be relevant to time t . In this case, the belief
reliability metric will be a function of t , denoted by RB(t).
Example 3: The state variable ξ can represent the product

failure time T which describes system failure behaviors. The
product is regarded be reliable at time t if the failure time
is larger than t . Thus, the belief reliability of the product at
time t can be obtained by letting � = [t, +∞), i.e. � is
relevant to t and RB(t) can be calculated by

RB(t) = M{T > t}. (8)

Example 4: The state variable ξ can also represent the
performance margin m of a product, which describes sys-
tem operation behaviors. m describes the distance between a
performance parameter and the associated failure threshold.
Therefore, � should be (0, +∞) and the belief reliability of
the product can be written as

RB = M{m > 0}. (9)

If we consider the degradation process of the performance
margin, i.e., ξ is relevant to t , RB(t) will be

RB(t) = M{m(t) > 0}. (10)

Definition 6 (Belief Reliability Distribution): Assume that
a product state variable ξ is an uncertain variable, then the
uncertainty distribution of ξ is defined as Belief Reliability
Distribution.
Example 5:When the state variable ξ represents the prod-

uct failure time T . Then the uncertainty distribution � of T
is belief reliability distribution.
Example 6:When the state variable ξ represents the prod-

uct performance margin m. Then belief reliability distribu-
tion 
 will be the uncertain measure of m, denoted as


(x) = M{m ≤ x}. (11)

B. BELIEF RELIABILITY DISTRIBUTION MODEL
The entropy measures the degree of uncertainty while uncer-
tainty entropy serves as a quantitative measurement of the
degree of uncertainty of uncertain variables. When only par-
tial information is accessible, such as k-th moments, there
are infinite numbers of uncertainty distributions that are con-
sistent with the provided information. Here we employ the
maximum entropy principle to ascertain the belief reliability
distribution.

Relative symbols and notations are introduced briefly as
follows:

ξ : an uncertain variable,
�(x): an uncertainty distribution of ξ ,

μk : the k-th moment of uncertain variable ξ , k =
1, 2, 3, · · · .
Definition 7 (See Liu [11]): Suppose that ξ is an uncertain

variable with uncertainty distribution �. Then its entropy is
determined by

H [ξ ] =
∫ +∞

−∞
S(�(x))dx (12)

where S(t) = −tlnt − (1 − t)ln(1 − t).
Definition 8: (See Liu and Chen [18]): Let ξ be an uncer-

tain variable with uncertainty distribution �, and let k be a
positive integer. Then the k-th moment of ξ is

E[ξ k ] =
∫ +∞

−∞
xkd�(x). (13)

The optimal model is written as:⎧⎪⎪⎨
⎪⎪⎩
max H [ξ ] =

∫ +∞

−∞
S(�(x))dx

s.t.
∫ +∞

−∞
xkd�(x) = μk , for k = 1, 2, 3, · · ·

(14)

More specifically,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max H [ξ ] = −
∫ +∞

−∞
�(x)ln(�(x))

+ (1 − �(x))ln(1 − �(x))dx

s.t.
∫ +∞

−∞
xkd�(x) = μk , for k = 1, 2, 3, · · ·

(15)

IV. ESTIMATION TO BELIEF RELIABILITY
DISTRIBUTION MODEL
This section discusses the estimation to the optimal model,
which approximates belief reliability distribution based on
the maximum entropy principle. Since the form of the belief
reliability distribution is unknown, it is intuitive to apply the
discretization method to obtain the approximate solution of
the distribution. To obtain these discrete data, GA method
is adopted to find the global optimum solution with the
constraints on k-th moments. Subsequently, the linear inter-
polation method is used in this paper to estimate the belief
reliability distribution.

Belief reliability distribution is discretized into the form of
a piecewise linear function as shown in Eq.(16).

�(x) =

⎧⎪⎪⎨
⎪⎪⎩
0 if x < x1

αi + (αi+1 − αi)(x − xi)
xi+1 − xi

if xi < x < xi+1

1 if x > xN .

(16)

Then the Eq.(13) can be written as follows:

μk = E[ξ k ] =
N−1∑
i=1

(αi+1 − αi)(x
k+1
i+1 − xk+1

i )

(k + 1)(xi+1 − xi)
,

k = 1, 2, · · · . (17)
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When the belief degrees satisfy:

α(i) = (2i− 1)/2N , i = 1, 2, · · · ,N (18)

Eq.(12) can be written as:

H = N ×
N−1∑
i=1

p(i) × (xi+1 − xi) (19)

where p(i) is calculated by the Eq.(20).

p(i) = −0.5(α(i+ 1)2ln(α(i+ 1)) − α(i)2ln(α(i)))

+ 0.25(α(i+ 1)2 − α(i)2)

− 0.5((1 − α(i))2ln((1 − α(i)))

− (1 − α(i+ 1))2ln((1 − α(i+ 1))))

+ 0.25((1 − α(i))2 − (1 − α(i))2) (20)

Thus, the optimal model (15) is a non-linear programming
problem as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max H [ξ ] = N ×
N−1∑
i=1

p(i) × (xi+1 − xi)

s.t.
N−1∑
i=1

(αi+1 − αi)(x
k+1
i+1 − xk+1

i )

(k + 1)(xi+1 − xi)
− μk = 0,

k = 1, 2, · · ·
x1 < x2 < · · · < xN

(21)

where p(i) is calculated by Eq.(20).
Then genetic algorithm is applied to solve this non-linear

programming problem. Finally, the approximation to the
belief reliability distribution can be obtained by linear inter-
polation methods.

In summary, the estimation to the belief reliability distribu-
tion model can be divided into five steps, which is concisely
illustrated in the Fig.1.

V. MODEL VERIFICATION AND SENSITIVITY ANALYSIS
This section will briefly introduce the maximum entropy
principle proved by Chen and Dai [12] and then verify the
proposed optimal model based on this principle. Moreover,
a sensitivity analysis is conducted on the effect of the width
of variances and the number of interpolation points.

A. MODEL VERIFICATION
In uncertainty theory, Chen and Dai [12] proved a theorem
called maximum entropy principle when the expected value
and variance are known.
Theorem 1 (Maximum Entropy Principle): Let ξ be

an uncertain variable with finite expected value μ and
variance σ 2. Then

H [ξ ] ≤ πσ√
3

(22)

and the equality holds if is a normal uncertain variable with
expected value e and variance σ 2 , i.e. N (μ, σ ).

FIGURE 1. Flow chart of the estimation to the belief reliability
distribution model.

FIGURE 2. Optimal results and the standard model at
μ = 5, σ2 = 25, N = 500.

According to the maximum entropy principle theorem,
belief reliability distributions based on maximum entropy
principle are determined when the 1st and 2nd moments are
known.

When the expected value μ = 5, the variance σ 2 = 25
and the number of interpolation points N = 500, the optimal
results and the standard model are shown in Fig.2. The red
line represents the standard model, normal uncertainty dis-
tribution N (5, 5), and the blue one shows the estimation to
the proposed optimal model. As demonstrated in the Fig.2,
there is not a great difference between the optimal results
and the ideal results, which leads to the conclusion that the
estimation by using linear interpolation and GA is effec-
tive to the optimal model. Fig.3 shows that absolute errors
between the optimal results and standard model. As shown
in Fig.3, the absolute errors are no more than 0.015, which
also shows there is not a great difference between the optimal
results and the ideal results. It could be concluded from the
Fig.2 and Fig.3 that the optimal results are consistent with
the standard model and the proposed estimating approach is
effective to determine belief reliability distribution based on
the maximum entropy principle.
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FIGURE 3. Absolute errors between optimal results and standard model
at μ = 5, σ2 = 25, N = 500.

FIGURE 4. Absolute errors between optimal results and standard model
at μ = 5, N = 500.

B. SENSITIVITY ANALYSIS
As illustrated in Eq.(22), uncertainty entropy H is associated
with variances. A sensitivity analysis on the width of vari-
ances is conducted to investigate the relationship between the
width of variances and the optimal results.

In Fig.4, the four curves show the fluctuation of the abso-
lute errors between optimal results and standard model at
μ = 5,N = 500 with variances at 1,9,49,81, respectively.
As can be seen from the figure, there is an increasing tendency
of the degree of the fluctuations with the width of variances
raising. In other words, it could be implied that the accuracy
of the optimal results decreases as the variances increase
when the expected value and the number of interpolation
points keep the same.

Moreover, the number of interpolation points N also has
a significant influence on the optimal results. A sensitivity
analysis on the number of interpolation points is conducted to
explore the connection between the number of interpolation
points and the optimal results.

FIGURE 5. Optimal results and the standard model at at
μ = 5, σ2 = 25, N = 5 : 5 : 50.

Fig.5 shows the number of interpolation points from 5 to 50
with the step length 5 when the expected value μ = 5

FIGURE 6. Optimal results and the standard model at
μ = 5, σ2 = 25, N = 55 : 5 : 100.

and the variance σ 2 = 25 and Fig.6 shows the number of
interpolation points from 55 to 100 with the step length 5
when the expected value and the variance keep the same.
As shown in Fig.5, the fitting results of linear part are growing
better as the number of interpolation is increasing. As shown
in Fig.6, the fitting results of non-linear part are approaching
the standard model as the number of interpolation points is
growing. It could be inferred that the larger the number of
interpolation points is, the better the optimal results are.

From the above analysis, it could be observed that the
accuracy of the optimal results is a decreasing function of the
width of variances and an increasing function of the number
of interpolation points.

VI. DISCUSSIONS AND CONCLUSIONS
This paper specified the definition of belief reliability and
belief reliability distribution, extended the application of
maximum entropy principle in uncertainty theory, and pro-
posed an optimal model based onmaximum entropy principle
to estimate belief reliability distribution and an approach
to estimate the optimal model using linear interpolation
and genetic algorithm. According to the theorem proved by
Chen and Dai [12], the proposed estimating method is effec-
tive to determine the belief reliability distribution. The esti-
mating results are sensitive to the width of the variances and
the number of interpolation points. Based on the results of the
sensitivity analysis, when the number of interpolation points
keeps still, the accuracy of the optimal results decreases as
the width of the variance increases. In addition, the accuracy
of the optimal results is an increasing function of the number
of interpolation points when the width of the variance keeps
the same. In actual situations, it is possible to obtain more
accurate optimal results when we increase the number of
interpolation points. Besides, the number of interpolation
points also reflects the data density of belief degree according
to Eq. (18). Therefore, when we only concentrate on belief
degree around 0.5, we could adopt a small number of inter-
polation points to get satisfying optimal results. By contrast,
when we focus on belief degree near to 0 or 1, we have
to adopt a large number of interpolation points to obtain
reasonable optimal results.
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The proposed optimal model to estimate belief reliability
distribution based on the maximum entropy principle can be
applicable to the cases when k-th moments of an uncertain
state variable are available, which is important in the devel-
opment of belief reliability. Moreover, the proposed approach
also provides a new approach to obtain uncertainty distribu-
tions in uncertainty theory.

The estimating approach applied is a simple but
time-consuming one to obtain optimal results. Therefore,
the alternative of the estimation deserves further investiga-
tion. Moreover, this paper only considers k-th moments as
the constraints of the optimal model. More information could
be included in the optimal model to adapt to diverse cases.
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1 INTRODUCTION 

Products’ reliability and lifetime are usually as-
sessed by the life testing that uses time-to-failure da-
ta. But for highly reliable products, there are usually 
few or even no failure during the life testing, which 
makes it unappropriated to use life testing to assess 
these products’ reliability and lifetime. Therefore, 
the accelerated reliability testing (ADT) has attract-
ed much attention and been widely applied. ADT 
can obtain degradation data in a limited period of 
time by evaluating stress levels, and then uses these 
data for the reliability and lifetime assessments.

In a standard ADT analysis, there is a degradation 
model and an acceleration model. The degradation 
model describes the degradation paths under each 
stress level. Some of the parameters are assumed to 
be functions of stress levels, i.e., the acceleration 
model. In general, there are two broad categories of 
degradation models based on the probability theory, 
which are the degradation path models (Meeker et 
al., 1998) and the stochastic process models (Ye and 
Xie, 2015). These models are suitable for the situa-
tion where there are large samples. But in practical
applications, the sample size in ADT is usually small
due to the high price of the test items or the test 
equipment, which will cause a lack of knowledge on 
recognizing the population, and then lead to the epis-
temic uncertainty. Therefore, the probability theory 

based models are not appropriate for the small sam-
ple situation.

To quantify the epistemic uncertainty, various 
methods have been applied by utilizing subjective 
information such as belief degrees, including the 
Bayesian method (Li and Meeker, 2014), the interval 
analysis (Moore et al., 2009), and the fuzzy proba-
bility theory (Beer et al., 2013) . The prior distribu-
tions, the intervals or the fuzzy variables are used re-
spectively in these methods to utilize subjective
information to quantify the epistemic uncertainty
(Kang et al., 2016).

However, there still exit some problems. On the 
one hand, these methods quantify the epistemic un-
certainty by subjective measures, which could result 
in different results from different researchers. On the 
other hand, these methods origin from the probabil-
ity theory, which makes them unsuitable for the
ADT data with small sample size.

Motivated by these problems, the uncertainty the-
ory proposed by Liu (Liu, 2015) is introduced to the 
field of ADT modeling. The uncertainty theory is a
branch of mathematics for modeling belief degrees 
and is used for the small sample (or even no sample) 
situations (Liu, 2012). It has been widely used in 
many fields such as risk assessment (Liu, 2010), re-
liability analysis (Zeng et al., 2013), supply chain
(Huang et al., 2016), and so on.

Accelerated degradation model based on geometric Liu process

Ji-Peng Wu1, 2, Xiao-Yang Li1, 2, Rui Kang1, 2
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In this paper, based on the uncertainty theory, a 
positive uncertain process named the general geo-
metric Liu process is proposed to construct an uncer-
tain accelerated degradation model, and the statisti-
cal analysis method for parameter estimations is 
proposed correspondingly. The proposed methodol-
ogy quantifies the epistemic uncertainty by objective 
measures. The rest of the paper is organized as fol-
lows. Section 2 introduces preliminaries about the 
uncertainty theory. Section 3 presents the uncertain 
accelerated degradation model, derives the reliability 
and lifetime distributions and gives the correspond-
ing statistical analysis method. Section 4 conducts 
the case study and the sensitivity analysis. Section 5 
concludes the paper.

2 PRELIMINARIES

In this section, we introduce some preliminaries 
about uncertain measure, uncertain variable, and un-
certain process that will be used in the subsequent 
sections.

Definition 1 (Liu, 2015): Let be a nonempty 
set, and be a -algebra over . Each element 
in is called a measurable set. A set function M
from to [0, 1] is called an uncertain measure if it 
satisfies the following axioms:
1) Normality axiom: M { } = 1 for the universal

set .
2) Duality axiom: M { } + M{ } = 1 for any

event .
3) Subadditivity axiom: For every countable se-

quence of events , , …, we have

11

.
i i

ii

M M (1)

4) Product axiom (Liu, 2009): Let ( , ,M ) be
uncertainty spaces for k=1, 2, … , then the prod-
uct uncertain measure M is an uncertain meas-
ure satisfying

1
1

,
kk k k

k

M M (2)

where are arbitrarily chosen events from 
for k=1,2,…, respectively.

Definition 2 (Liu, 2015): Liu introduced the con-
cept of uncertainty distribution to describe uncertain 
variables. The uncertainty distribution of an un-
certain variable is defined by

, .x x x � (3)

Let be an uncertain variable with regular un-
certainty distribution ( ). Then the inverse func-
tion ( ) is called the inverse uncertainty distri-
bution of .

Definition 3 (Liu, 2008): Let T be a totally or-
dered set (that is usually “time”), and let ( , ,M)
be an uncertainty space. An uncertain process is de-
fined as a measurable function from ×( , ,M) to 
the set of real numbers, i.e., for each and any 
Borel set B of real numbers, the set

{ } { ( ) B}| }
t t
X B X (4)

is an event. In other words, an uncertain process is a 
sequence of uncertain variables indexed by time.

Definition 4 (Liu, 2014): An uncertain process 
is said to have an uncertainty distribution ( )

if at each time t, the uncertain variable has the 
uncertainty distribution ( ).

Theorem 1 (Liu, 2014): (Sufficient and Neces-
sary Condition) A function ( ): × (0,1)
is an inverse uncertainty distribution of independent 
uncertain process if and only if 1) at each time t, ( ) is a continuous and strictly increasing func-
tion; and 2) for any times t2<t1, ( ) ( )
is a monotone increasing function with respect to .

3 METHODOLOGY

In this section, we use an uncertain process called 
the general geometric Liu process (Liu, 2015) to for 
ADT modeling, derive the reliability and lifetime 
distributions, and gives the corresponding statistical
analysis method.

3.1 Accelerated degradation modeling
In practical applications, the degradation process

is usually positive. To describe the positive degrada-
tion process under the small sample situation, we 
consider the following uncertain process

( ) exp( ( )),X t e t t C t (5)

where e is the log-drift parameter, also known as the 
degradation rate. is the log-diffusion parame-
ter. ( ) is the Liu process that follows a normal 
uncertainty distribution ( ) with mean 0 and vari-
ance , i.e. ( )~ (0, ). Eq.(5) is called the 
general geometric Liu process. Note that ( ) in 
Eq.(5) follows a lognormal uncertainty distribution 
( ), i.e., ( )~ ( , ). Its uncertainty
distribution can be expressed as

-1
ln

1 exp .
3t

e t x
x

t
(6)

In ADT modeling, acceleration models are usual-
ly utilized to describe the relationship between the 
degradation rate and the accelerated stress level,
which can be expressed as



ln ( ) ,i ie s a b s (7)

where a and b are unknown parameters. si is the 
normalized stress level that can be expressed as
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where S0 is the normal stress level, Si is the ith accel-
erated stress level, and SH is the highest accelerated 
stress level. From Eq.(8), it is easy to know that s0 =
0, and sH =1.

For simplicity, our proposed uncertain accelerat-
ed degradation model in Eq.(5) and Eq.(7) is denot-
ed by M1.The unknown parameters in model M1 are
summarized as = (a, b, ), in which a and b are 
shown in Eq.(7), is shown in Eq.(5).

3.2 First hitting time and reliability distributions of 
the proposed model

After getting the proposed model M1, we need to de-
rive the reliability and lifetime distributions corre-
spondingly. 

Define as the failure threshold of the degrada-
tion process, then the lifetime T can be defined as 
the first hitting time (FHT) when the degradation 
process X(t) reaches . Liu (2013) defined the FHT 
of the uncertain process as follows:

inf{ 0 | ( ) }.X tt t (9)

According to Theorem 3 in (Liu, 2013), the FHT 
of an independent increment process with a continu-
ous uncertainty distribution at each time can be ex-
pressed as follows,

00
sup ( ) 1 inf ( ).t

t zt z
z X t (10)

Therefore, before deriving the reliability and life-
time distributions, we firstly need to prove that X(t)
in Eq.(5) is an independent increment process with a 
continuous uncertainty distribution at each time.

Proof:
1) From Eq.(6), it is easy to know that X(t) has a

continuous uncertainty distribution at each time t.
2) For each  , the uncertainty distribution of( | ) can be expressed as

-1
( ) ln

1 exp .
3t

e s t
t

(11)

Eq.(11) is obvious a continuous function with re-
spect to time t.

3) From Eq.(6), we can get the inverse uncertainty
distribution of X(t) as follows,

1 3exp( ( ) ln ), (0,1).
1t

te s t (12)

At each time t, the derivative of Eq.(12) with re-
spect to is

1 3 3 1( ) ' exp( ( ) ln ) .
1 (1 )t

t te s t (13)

Since (0,1), we can get that (1 ) > 0.
It is easy to prove that ( ) is a continuous and 
strictly increasing function with respect to .
4) For any times 0 < t2 < t1, to prove ( )( ) is a monotone increasing function with

respect to , we need to prove the following con-
dition:

1 2

11 1
1

2
2

3
exp ( ) ln

1

3
exp ( ) ln 0.

1

t t
t

e s t

t
e s t

(14)

Since exp( ) is a monotone increasing function, 
Eq.(14) is equivalent to the following condition:

1 2 1 2
3( ) ln 0.

1
e s t t t t (15)

According to the given information, it is easy to 
prove that the condition in Eq.(15) holds. Thus, ( ) ( ) is a monotone increasing func-
tion with respect to . Based on Theorem 1 in sec-
tion 2, we can prove that X(t) in Eq.(5) is an inde-
pendent increment process.

From the above analyses, we can get that the un-
certain process X(t) in Eq.(5) is an independent in-
crement process with a continuous uncertainty dis-
tribution at each time t. Thus, the uncertainty 
distribution of the FHT of X(t) can be expressed as 
follows,

0
-1

0

1

1 inf ( )

( ) ln
1 inf 1 exp

3

ln ( )
1 exp .

3

t
t z

t z

z

e s t
t

e s z
z

(16)

The corresponding reliability distribution is
-1

( ) ln
( ) 1 exp

3B
e s t

R t t t
t

(17)

where RB(t) is known as the “belief reliability” with 
an uncertain measure (Zeng et al., 2013).



Meanwhile, the belief reliable life, i.e. BL( ), can
also be derived and expressed as follows

1

0
sup (1 ).B

t z
BL R t (18)

3.3 Statistical analysis method for parameter 
estimations

With different loading profiles, there are different
kinds of ADT plans, including the constant stress 
accelerated degradation testing (CSADT), the step 
stress accelerated degradation testing (SSADT), and 
the progressive stress accelerated degradation testing 
(PSADT). Here, we provide the statistical analysis 
method for parameter estimations in CSADT.

Liu (2015) employed the principle of least 
squares for parameter estimations of uncertain vari-
ables. In this section, we also use this method to es-
timate the unknown parameters of the proposed 
model M1.

Suppose that xijk is the kth observed degradation 
value for the jth sample under the ith stress level, and 
tijk is the corresponding measurement time, i=1, 
2, …, K, j=1, 2, …, ni, k=1, 2,…, mi, where K is the 
number of accelerated stress levels, ni is the sample 
size under the ith stress level, and mi is the number of 
measurements for the jth sample under the ith stress 
level.

The unknown parameters of the proposed model 
M1 is = (a, b, ). We proposed a two-step statisti-
cal analysis method for the parameter estimations: 1) 
Collecting belief degrees; 2) Estimating unknown 
parameters. The procedure of the method is shown 
in Figure 1 and details are shown as follows:

Figure1. The two-step statistical analysis method for parameter 
estimations of the proposed model.

1) Obtain belief degrees
From Section 3.2, it is known that xik is an uncer-

tain variable. All the degradation data xijk of the kth

measurement under the ith stress level are the obser-
vations of xik, i.e., xik = {xi1k, xi2k… xijk…}, (j=1,
2 … Ni, and ni is the upper boundary of Ni). Each of 
the element has a belief degree ijk. In this section, 
we use the approximate median rank functions to 
obtain belief degrees, which is expressed as follows,

( - 0.3) / ( 0.4), 1, 2,..., .ijk ik ikj N j N (19)

For all the degradation data of the kth measure-
ment under the ith stress level, if there exist degrada-
tion data that are the same, then their belief degrees 
are also the same.

2) Estimate unknown parameters
According to the principle of least squares, the

parameters estimations of the proposed model can be 
obtained by the principle of least squares, which is

2

1 1 1
min |

i im NK
ijk ijk

i k j
Q x (20)

4 CASE STUDY

In this section, the carbon-film resistors CSADT da-
taset (Meeker and Escobar, 1998) is used to illustrate 
the proposed methodology, and discussions are con-
ducted for the sensitivity analysis of the proposed 
methodology to the sample sizes.

4.1 The carbon-film resistors CSADT dataset
In the carbon-film resistors CSADT dataset, there 
are 9, 10, 10 samples under each accelerated stress 
levels, which belongs to the small sample situation. 
Therefore, the proposed methodology can be used to 
this case for the reliability and lifetime evaluations 
under normal conditions. Details about this case is 
shown in Table 1.

Table 1.  Basic information about the carbon-film 
resistors CSADT dataset.___________________________________________________
Test information Contents___________________________________________________
Stress levels (temperature/ ) 83, 133, and 173
Normal conditions ( ) 50
Sample size 9, 10, and 10
Measurement times 4, 4, and 4
Failure threshold (%) 12___________________________________________________

4.2 Reliability and lifetime evaluations under 
normal conditions

Since the accelerated stress is temperature, the Ar-
rhenius model is selected as the acceleration model. 
Based on the proposed methodology, the parameter 
estimations are obtained as follows:

Table 2.  Parameter estimation results.___________________________________________________
Parameters a b___________________________________________________
Values -15.18 3.975 9.060e-04___________________________________________________

Taking the parameter estimation results in Table 
2 into Eq.(17) and Eq.(18), the reliability and life-



time evaluations under normal conditions can be ob-
tained. Results are showed in Figure 2.

Figure 2. Reliability and lifetime evaluations of the carbon-film 
resistors ADT dataset under normal conditions.

From Figure 2 (a), it can be seen that the belief 
reliability changes from the initial value 1 and de-
creases gradually with the increasing time, which
agrees with the intuitive cognition of human beings.
If decision makers are interested at belief reliability 
RB=0.9, the corresponding belief reliable lifetime 
BL(0.9)=10181 hours. It means that the belief degree 
that the products will survived at the normal condi-
tions after 10818 hours is 0.9.

4.3 Discussions
For the sensitivity analysis of the proposed method-
ology to the sample sizes, we simulate several dif-
ferent situations that has different sample size, and 
remark each situation as STr (nr1, nr2, nr3), r=1, 2,…,
8. STr represents the rth situation. nr1, nr2, and nr3
represents the chosen sample size under each stress 
level. Details are shown in Table 3.

Table 3.  Different situations for discussions.___________________________________________________
Situations | Sample sizes nr1 nr2 nr3

___________________________________________________
ST1 2 3 3
ST2 3 4 4
ST3 4 5 5
ST4 5 6 6
ST5 6 7 7
ST6 7 8 8
ST7 8 9 9
ST8 9 10 10___________________________________________________

As shown in Table 3, under each situation, there 
are many different combinations of samples, which 
will lead to many different reliability evaluations. To 
present the range of reliability evaluations under dif-
ferent situations, under each monitoring time t under 
the situation STr, we choose the minimum and max-

imum reliability evaluation results as the lower and 
upper boundaries of the reliability evaluations. So 
the lower and upper boundaries under each situation 
can be obtained, and results are shown in Figure 3.

Figure 3. Lower and Upper boundaries of the reliability evalua-
tion results under different sample sizes.

Figure 3 show that with the increasing sample 
size, the lower and upper boundary are approaching 
gradually. It indicate that when there are more sam-
ples that can provide more information, the epistem-
ic uncertainty in ADT data decreases, which will 
lead to more stable reliability evaluation results. In 
addition, the reliability evaluations results under ST8
is included in the lower and upper boundaries under 
most situations (ST3 to ST7). As for ST1 and ST2, the 
sample size is very small, which makes the provided 
information too scarce to get stable reliability evalu-
ation results.

The above analysis results show that the proposed 
methodology is a suitable choice for the small sam-
ple situation and can furtherly provide support for 
the subsequent decision making.

5 CONCLUSIONS

This paper deals with the positive degradation 
process with small samples in ADT, and concludes 
as follows,
1) Based on the uncertainty theory, the general geo-

metric Liu process is used to conduct an uncertain
accelerated degradation model, which takes the
epistemic uncertainty due to small samples in
ADT data into consideration.



2) The corresponding statistical analysis method
with objective measures is provided for the un-
known parameter estimations.

3) The application results show that the reliability
evaluation results of the proposed methodology
agrees with agrees with the intuitive cognition of
human beings, and the discussion results show
that the proposed methodology provides stable re-
liability evaluation results under small samples,
which makes it a suitable choice for the small
sample situation and can provide support for the
subsequent decision making.
In addition to the work of this paper, there are

other issues that are worthwhile for future research-
es. The proposed model is built up on the general 
geometric Liu process, which is a positive uncertain 
process. But in practical applications, there are deg-
radation processes which are not only always posi-
tive but also strictly monotonic. It is necessary to 
apply other uncertain processes in ADT to model
such degradation processes.
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a b s t r a c t

Data Envelopment Analysis (DEA) is a very effective method to evaluate the relative efficiency of
decision-making units (DMUs), which has been applied extensively to education, hospital, finance, etc.
However, in real-world situations, the data of production processes cannot be precisely measured in
some cases, which leads to the research of DEA in uncertain environments. This paper will give some
researches to uncertain DEA based on uncertainty theory. Due to the uncertain inputs and outputs, we
will give three uncertain DEA models, as well as three types of fully ranking criteria. For each uncertain
DEA model, its crisp equivalent model is presented to simplify the computation of uncertain models.
Finally, a numerical example is presented to illustrate the three ranking criteria.

� 2017 Published by Elsevier Ltd.

1. Introduction

Data envelopment analysis (DEA), as an useful management
and decision tool, has been widely used since it was first invented
by Charnes, Cooper, and Rhodes (1978). The method is followed by
a series of theoretical extensions, such as Banker, Charnes, and
Cooper (1984), Charnes, Cooper, Golany, Seiford, and Stutz
(1985), Petersen (1990), Tone (2001) and Cooper, Seiford, and
Tone (2000). More DEA papers can refer to Seiford (1994) in which
500 references are documented.

In many cases, decision makers are interested in a complete
ranking over the dichotomized classification. The researches on
ranking have come up for this reason. Over the last decade, many
literatures on ranking in DEA have been published. By evaluating
DMUs through both self and peer pressure, Sexton, Silkman, and
Hogan (1986) can attain a more balanced view of the decision-
making units. Andersen and Petersen (1993) developed the
super-efficiency approach to get a ranking value which may be
greater than one through evaluated DMU’s exclusion from the lin-
ear constraints. In the benchmark ranking method (Torgersen,
Forsund, & Kittelsen, 1996), a DMU is highly ranked if it is chosen
as a useful target for many other DMUs.

Most methods of ranking DMUs assume that all inputs and out-
puts data are exactly known. However, in real situations, such as in
a manufacturing system, a production process or a service system,
inputs and outputs are volatile and complex so that they are diffi-
cult to measure in an accurate way. Thus, people tend to use fuzzy
theory to describe the indeterminate inputs and outputs, which
motivates the fuzzy DEA. Generally speaking, fuzzy DEA method
can be catagorized into four types: the tolerance approach,
the a-level based approach, the fuzzy ranking approach and the
possibility approach (Adel, Emrouznejad, & Tavana, 2011). In the
tolerance approach (refer to Sengupta (1992)), tolerance levels on
constraint violations are defined to integrate fuzziness into the
DEA models, and the input and output coefficients can be thus
treated as crisps. The a-level based approach may be the most
popular model of fuzzy DEA. This method discretize the original
problem into a series of parametric programs in order to decide
the a-cuts of the membership function of efficiency. Related stud-
ies include Kao and Liu (2000), Entani, Maeda, and Tanaka (2002),
Liu (2008) and Angiz, Emrouznejad, and Mustafa (2012), etc. The
fuzzy ranking model is first proposed by Guo and Tanaka (2001),
and it focus on determining the fuzzy efficiency scores of DMUs
using optimization methods which require ranking fuzzy sets.
One can also refer to León, Liern, Ruiz, and Sirvent (2003), Wang
and Luo (2006) or Angiz, Tajaddini, Mustafa, and Kamali (2012)
for more concepts and information of the fuzzy ranking method.
In the possibility approach, the fuzzy DEA models are converted
to possibility linear program problem by using possibility

http://dx.doi.org/10.1016/j.cie.2017.05.034
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measures. See Lertworasirikul, Fang, Joines, and Nuttle (2003) for
example. Other studies on fuzzy DEA include fuzzy goal program-
ming method (Sheth & Konstantinos, 2003), fuzzy random DEA
model in hybrid uncertain environments (Qin & Liu, 2010), fuzzy
rough DEA model (Shiraz, Charles, & Jalalzadeh, 2014), cross eval-
uation approach (Costantino, Dotoli, Epicoco, Falagario, &
Sciancalepore, 2012), and fuzzy clustering approach (David &
Deep, 2012), etc.

Although the fuzzy DEA models are popular and in most time
effective, it may bring some problems to the decision makers in
some cases. This is because the possibility measure defined in
fuzzy theory doesn’t satisfy duality, as explained in Liu (2012).
For this reason, an uncertainty theory was founded by Liu (2007)
in 2007, and refined by Liu (2010a) in 2010 to deal with the peo-
ple’s belief degree mathematically. A concept of uncertain variable
is used to model uncertain quantity, and belief degree is regarded
as its uncertainty distribution. As extensions of uncertainty theory,
uncertain programming was proposed by Liu (2009) in 2009,
which aims to deal with the optimal problems involving uncertain
variable. Since then, uncertainty theory was used to solve a variety
of real optimal problems, including finance (Chen & Liu, 2010; Peng
& Yao, 2010; Liu, 2013), reliability analysis (Liu, 2010b; Zeng, Wen,
& Kang, 2013), uncertain graph (Gao, 2013; Gao & Gao, 2013), etc.
As an application, this work was followed by uncertain multiobjec-
tive programming models, uncertain goal programming models
(Liu & Chen, 2013), and uncertain multilevel programming models
(Liu & Yao).

In this paper, we will assume the inputs and outputs in DEA
models are uncertain variables, and introduce some new DEAmod-
els and their ranking criteria based on uncertainty theory. The
remainder of this paper is organized as follows: Some basic con-
cept and results on uncertainty theory will be introduced in Sec-
tion 2; Section 3 will give some basic introduction to DEA
models; The method to obtain uncertainty distribution is intro-
duced in Section 4. In Section 5, we will give three uncertain DEA
models, three fully ranking criteria, as well as their equivalent
deterministic models. Finally, a numerical example will be given
to illustrate the uncertain DEA model and the ranking method in
Section 6.

2. Preliminaries

Uncertainty theory was founded by Liu (2007) in 2007 and
refined by Liu (2010a) in 2010. Nowadays uncertainty theory has
become a branch of axiomatic mathematics for modeling human
uncertainty. In this section, we will state some basic concepts
and results on uncertain variables. These results are crucial for
the remainder of this paper.

Let C be a nonempty set, and L a r-algebra over C. Each ele-
ment K 2 L is assigned a number MfKg 2 ½0;1�. In order to ensure
that the number MfKg has certain mathematical properties, Liu
(2007, 2010a) presented the three axioms:

(i) MfCg ¼ 1 for the universal set C.
(ii) MfKg þMfKcg ¼ 1 for any event K.
(iii) For every countable sequence of events K1;K2; . . ., we have

M
[1
i¼1

Ki

( )
6

X1
i¼1

MfKig

The triplet ðC;L;MÞ is called an uncertainty space. In order to
obtain an uncertain measure of compound event, a product
uncertain measure was defined by Liu (2012), thus producing
the fourth axiom of uncertainty theory:

(iv) Let ðCk;Lk;MkÞ be uncertainty spaces for k ¼ 1;2; . . . ;1.
Then the product uncertain measure M is an uncertain mea-
sure satisfying

M
Y1
k¼1

Kk

( )
¼

1̂

k¼1

MkfKkg:

An uncertain variable is a measurable function n from an uncer-
tainty space ðC;L;MÞ to the set of real numbers (Liu, 2007). In
order to describe an uncertain variable in practice, the concept of
uncertainty distribution is defined as

UðxÞ ¼ Mfn 6 xg ð1Þ
for any real number x. For example, the linear uncertain variable
n � Lða; bÞ has an uncertainty distribution

UðxÞ ¼
0; if x 6 a

ðx� aÞ=ðb� aÞ; if a 6 x 6 b

1; if x P b:

8><>: ð2Þ

An uncertain variable n is called zigzag if it has a zigzag uncer-
tainty distribution

UðxÞ ¼

0; if x 6 a

ðx� aÞ=2ðb� aÞ; if a 6 x 6 b

ðxþ c � 2bÞ=2ðc � bÞ; if b 6 x 6 c
1; if x P c

8>>><>>>: ð3Þ

denoted by Zða; b; cÞ where a; b; c are real numbers with a < b < c.
An uncertain variable n is called normal if it has a normal uncer-
tainty distribution

UðxÞ ¼ 1þ exp
pðe� xÞffiffiffi

3
p

r

� �� ��1

ð4Þ

denoted by Nðe;rÞ where e and r are real numbers with r > 0. An
uncertainty distribution U is said to be regular if its inverse function
U�1ðaÞ exists and is unique for each a 2 ð0;1Þ. The uncertain vari-
ables n1; n2; . . . ; nn are said to be independent if

M
\n
i¼1

ðni 2 BiÞ
( )

¼
n̂

i¼1

M ni 2 Bif g ð5Þ

for any Borel sets B1;B2; . . . ;Bn.

Theorem 1 (Liu, 2010a). Let n1; n2; . . . ; nn be independent uncertain
variables with regular uncertainty distributions U1;U2; . . . ;Un,
respectively. If f is a strictly increasing function, then

n ¼ f ðn1; n2; . . . ; nnÞ ð6Þ
is an uncertain variable with inverse uncertainty distribution

W�1 ¼ f ðU�1
1 ðaÞ;U�1

2 ðaÞ; . . . ;U�1
n ðaÞÞ: ð7Þ

Theorem 2 (Liu & Ha, 2010). Assume n1; n2; . . . ; nn are independent
uncertain variables with regular uncertainty distributions
U1;U2; . . . ;Un, respectively. If f ðx1; x2; . . . ; xnÞ is strictly increasing
with respect to x1; x2; . . . ; xm and strictly decreasing with respect to
xmþ1; xmþ2; . . . ; xn, then the uncertain variable n ¼ f ðn1; n2; . . . ; nnÞ
has an expected value

E½n� ¼
Z 1

0
f ðU�1

1 ðaÞ; . . . ;U�1
m ðaÞ;U�1

mþ1ð1� aÞ; . . . ;U�1
n ð1� aÞÞda

ð8Þ
provided that E½n� exists.

M. Wen et al. / Computers & Industrial Engineering 110 (2017) 498–504



3. DEA model

CCRmodel is one of the most frequently used DEAmodel, which
was proposed by Charnes et al. (1978). Since the following sections
will use this model, we will give some basic introduction to CCR
model. Firstly let us review some symbols and variables:

DMUk: the kth DMU, k ¼ 1;2; . . . ;n;
DMU0: the target DMU;
xk 2 Rp�1: the inputs vector of DMUk, k ¼ 1;2; . . . ;n;
x0 2 Rp�1: the inputs vector of the target DMU0;
yk 2 Rq�1: the outputs vector of DMUi, k ¼ 1;2; . . . ;n;
y0 2 Rq�1: the outputs vector of the target DMU0;
u 2 Rp�1: the vector of input weights;
v 2 Rq�1: the vector of output weights.

In this model, the efficiency of entity evaluated is obtained as a
ratio of the weighted output to the weighted input subject to the
condition that the ratio for every entity is not larger than 1. Math-
ematically, it is described as follows:

max
u;v

h ¼ vTy0

uTx0

subject to :

vTyj 6 uTxj; j ¼ 1;2; . . . ;n

u P 0

v P 0:

ð9Þ

Definition 1 (Efficiency). DMU0 is efficient if h� ¼ 1, where h� is the
optimal value of (9).

4. Acquisition method of uncertainty distribution

In uncertain DEA models, which will be introduced in Section 5,
inputs and outputs are regarded as uncertain variables. A key prob-
lem is to determine their uncertainty distributions. Different from
the method to determine probability distributions in probability
theory, uncertainty distributions cannot be obtained by historical
data since the sample size is too small (even no samples). Thus,
we have to invite some domain experts to evaluate their belief
degrees of each event will occur. For this purpose, Liu (2010a) pro-
posed a questionnaire survey method for collecting expert’s exper-
imental data and determine the uncertainty distribution.

The starting point is to invite one expert who is asked to com-
plete a questionnaire about the value of some uncertain input or
output variable n like ‘‘What is the value of input variable n?”.

We first ask the domain expert to choose a possible value x that
the uncertain demand nmay take, and then quiz him‘‘How likely is
n less than or equal to x?”.

Denote the expert’s belief degree by a. An expert’s experimental
data ðx;aÞ thus acquired from the domain expert.

Repeating the above process, we can obtain the following
expert’s experimental data

ðx1;a1Þ; ðx2;a2Þ; . . . ; ðxn;anÞ ð10Þ
that meet the following consistence condition (perhaps after a
rearrangement)

x1 < x2 < . . . < xn; 0 6 a1 6 a2 6 . . .an 6 1: ð11Þ
Based on those expert’s experimental data, Liu (2010a) suggested
an empirical uncertainty distribution,

UðxÞ ¼
0; if x 6 x1
ai þ ðaiþ1�aiÞðx�xiÞ

xiþ1�xi
; if xi 6 x 6 xiþ1; 1 6 i < n

1; if x > xn:

8><>: ð12Þ

denoted by Eðx1;a1; x2;a2; . . . ; xn;anÞ. Essentially, it is a type of linear
interpolation method.

Assume there are m domain experts and each produces an
uncertainty distribution. Then we may get m uncertainty distribu-
tions U1ðxÞ;U2ðxÞ; . . . ;UmðxÞ. The Delphi method was originally
developed in the 1950s by the RAND Corporation based on the
assumption that group experience is more valid than individual
experience. Wang, Gao, and Guo (2012) recast the Delphi method
as a process to determine the uncertainty distribution. The main
steps are listed as follows:

Step 1: The m domain experts provide their expert’s experimental
data,

ðxij;aijÞ; j ¼ 1;2; . . . ;ni; i ¼ 1;2; . . . ;m: ð13Þ
Step 2: Use the i-th expert’s experimental data

ðxi1;ai1Þ; ðxi2;ai2Þ; . . . ; ðxini ;aini Þ to generate the i-th expert’s
uncertainty distribution Ui.

Step 3: Compute UðxÞ¼w1U1ðxÞþw2U2ðxÞþ . . .þwmUmðxÞ where
w1;w2; . . . ;wm are convex combination coefficients.

Step 4: If jaij �UðxijÞj are less than a given level e > 0, then go to
Step 5. Otherwise, the i-th expert receives the summary
(U and reasons), and then provides a set of revised expert’s
experimental data. Go to Step 2.

Step 5: The last U is the uncertainty distribution of the customer’s
demand.

5. Uncertain DEA ranking criteria

This section will give some researches to empirical uncertain
DEA based on uncertainty theory introduced in Section 2. The
new symbols and notations are given as follows:

exk ¼ ðexk1; exk2; . . . ; exkpÞ: the uncertain input vectors of DMUk,
k ¼ 1;2; . . . ;n;eyk ¼ ðeyk1; eyk2; . . . ; eykqÞ: the uncertain output vectors of DMUk,
k ¼ 1;2; . . . ;n;
UkðxÞ ¼ ðUk1ðxÞ;Uk2ðxÞ; . . . ;UkpðxÞÞ: the uncertainty distribution
vector of exk ¼ ðexk1; exk2; . . . ; exkpÞ; k ¼ 1;2; . . . ;n;
WkðxÞ ¼ ðWk1ðxÞ;Wk2ðxÞ; . . . ;WkqðxÞÞ: the uncertainty distribu-
tion vector of eyk ¼ ðeyk1; eyk2; . . . ; eykqÞ; k ¼ 1;2; . . . ;n.

In the following sections, three types of uncertain DEA fully
ranking criteria are to be investigated.

5.1. The expected ranking criterion

Liu (2007, 2012) proposed the expected value operator of
uncertain variable and uncertain expected value model. The essen-
tial idea of the uncertain expected DEA model is to optimize the

expected value of vT ~y0
uT ~x0

subject to some chance constraints, then

we have the first type of the uncertain DEA model:

h ¼ max
u;v

E vT ~y0
uT ~x0

h i
subject to :

MfvT~yk 6 uT~xkg P a; k ¼ 1;2; . . . ;n
u P 0
v P 0

8>>>>>>><>>>>>>>:
ð14Þ

in which a 2 ð0:5;1�.
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Definition 2. A vector ðu;vÞ P 0 is called a feasible solution to the
uncertain programming model (14) if

MfvT~yk 6 uT~xkg P a ð15Þ
for k ¼ 1;2; . . . ;n.

Definition 3. A feasible solution ðu�;v�Þ is called an expected opti-
mal solution to the uncertain programming model (14) if

E
v�T~y0

u�T~x0

� �
P E

vT~y0

uT~x0

� �
ð16Þ

for any feasible solution ðu;vÞ.
Expected Ranking Criterion: The greater the optimal objective

value is, the more efficient DMU0 is ranked.

Theorem 3. Assume that ex1i; ex2i; . . . ; exni are independent uncertain
inputs with uncertainty distribution U1i;U2i; . . . ;Uni for each i,
i ¼ 1;2; . . . ; p, and ey1i; ey2i; . . . ; eyni are independent uncertain outputs
with uncertainty distribution W1j;W2j; . . . ;Wnj for each j,
j ¼ 1;2; . . . ; q. Then the uncertain programming model (14) is equiv-
alent to the following model:

h ¼ max
u;v

R 1
0

vTW�1
0 ðaÞ

uTU�1
0 ð1�aÞda:

subject to :
vTW�1

k ðaÞ 6 uTU�1
k ð1� aÞ; k ¼ 1;2; . . . ;n

u P 0
v P 0:

8>>>>>>><>>>>>>>:
ð17Þ

Proof. Since the function vT ~y
uT ~x is strictly increasing with respect to ~y

and strictly decreasing with respect to ~x, it follows from Theorem 1

that the inverse uncertainty distribution of vT ~y
uT ~x is vTW�1ðaÞ

uTU�1ð1�aÞ. Thus

MfvT~yk 6 uT~xkg P a holds if and only if vTW�1
k ðaÞ 6 uTU�1

k ð1� aÞ
for k ¼ 1;2; . . . ;n. By using Theorem 2, we obtain

E
vT~y0

uT~x0

� �
¼

Z 1

0

vTW�1
0 ðaÞ

uTU�1
0 ð1� aÞda: ð18Þ

The theorem is thus verified. h

5.2. The optimistic ranking criterion

Chance-constrained programming (CCP), which was initialized
by Charnes and Cooper (1961), offers a powerful means for mod-
elling stochastic decision systems. The essential idea of chance-
constrained programming is to optimize some critical value with
a given confidence level subject to some chance constraints.
Inspired by this idea, Liu (2010a) extended it to uncertain pro-
gramming models. Assuming that the decision makers want to
maximize the optimistic value of the uncertain objective at given
confidence level, we have the second type of DEA model:

max
u;v

f

subject to :

M
vT ~y0
uT ~x0

P f
n o

P 1� a

MfvT~yk 6 uT~xkg P a; k ¼ 1;2; . . . ; n
u P 0
v P 0

8>>>>>>>>>><>>>>>>>>>>:
ð19Þ

in which a 2 ð0:5;1�.

Definition 4. A feasible solution ðu�;v�Þ is called an optimistic
optimal solution to the uncertain programming model (19) if

max f jM v�T~y0

u�T~x0
P f

� �
P 1� a

� �
P max f jM vT~y0

uT~x0
P f

� �
P 1� a

� �
ð20Þ

for any feasible solution ðu;vÞ.
Optimistic Ranking Criterion: The greater the optimal objec-

tive value is, the more efficient DMU0 is ranked.

Theorem 4. Assume that ex1i; ex2i; . . . ; exni are independent uncertain
inputs with uncertainty distribution U1i;U2i; . . . ;Uni for each i,
i ¼ 1;2; . . . ; p, and ey1i; ey2i; . . . ; eyni are independent uncertain outputs
with uncertainty distribution W1j;W2j; . . . ;Wnj for each j,
j ¼ 1;2; . . . ; q. Then the uncertain programming model (19) is equiv-
alent to the following model:

max
u;v

vTW�1
0 ðaÞ

uTU�1
0 ð1�aÞ

subject to :

vTW�1
k ðaÞ 6 uTU�1

k ð1� aÞ; k ¼ 1;2; . . . ;n

u P 0

v P 0:

8>>>>>>>>>><>>>>>>>>>>:
ð21Þ

Proof. By using Theorem 1, the theorem can be easily obtained. h

5.3. The maximal chance ranking criterion

Sometimes the decision maker may want to maximize the

chance of satisfying the event vT ~y0
uT ~x0

P 1. In order to model this type

of decision system, Liu (1997), Liu (1999) and Liu (2002) provided
the dependent-chance programming (DCP). Here we carried out
the DCP model into the DEA as follows:

h ¼ max
u;v

M vT ~y0
uT ~x0

P 1
n o

subject to :

MfvT~yk 6 uT~xkg P a; k ¼ 1;2; . . . ;n

u P 0

v P 0

8>>>>>>>>>><>>>>>>>>>>:
ð22Þ

in which a 2 ð0:5;1�.

Definition 5. A feasible solution ðu�;v�Þ is called an maximal
chance optimal solution to the uncertain programming model (22)
if

M
v�T~y0

u�T~x0
P 1

� �
P M

vT~y0

uT~x0
P 1

� �
ð23Þ

for any feasible solution ðu;vÞ.
Maximal Chance Ranking Criterion: The greater the optimal

objective value is, the more efficient DMU0 is ranked.

Theorem 5. Assume that ex1i; ex2i; . . . ; exni are independent uncertain
inputs with uncertainty distribution U1i;U2i; . . . ;Uni for each i,
i ¼ 1;2; . . . ; p, and ey1i; ey2i; . . . ; eyni are independent uncertain outputs
with uncertainty distribution W1j;W2j; . . . ;Wnj for each j,
j ¼ 1;2; . . . ; q. Then the uncertain programming model (22) is equiv-
alent to the following model:

M. Wen et al. / Computers & Industrial Engineering 110 (2017) 498–504



h ¼ max
u;v

M vT ~y0
uT ~x0

P 1
n o

subject to :
vTW�1

k ðaÞ 6 uTU�1
k ð1� aÞ; k ¼ 1;2; . . . ;n

u P 0
v P 0:

8>>>>>>><>>>>>>>:
ð24Þ

Proof. By using Theorem 1, the theorem can be easily obtained. h

6. A numerical example

This example aims to illustrate the three uncertain DEA models
and their corresponding ranking methods. For simplicity, we will
only consider five DMUs with two inputs and two outputs which
are all zigzag uncertain variables denoted by Zða; b; cÞ. Table 1
gives the information of the DMUs.

From Tables 2–4, we can get the following conclusions:

(i) Roughly speaking, the ranking results are DMU2, DMU4,
DMU5, DMU3, DMU1.

(ii) As shown in Table 5, the confidence level a affects the rank-
ing results. When a ¼ 0:90, the DMUs are ranked: DMU3,
DMU4, DMU5, DMU2, DMU1. At other a, the DMUs are
ranked: DMU2, DMU4, DMU5, DMU3, DMU1; This phenomena
indicates that the ranking method in uncertain environment
is more complex than the traditional ranking methods
because of the inherent uncertainty contained in inputs
and outputs.

(iii) Although the ranking results with different ranking criterion
are uniform in this example, the three ranking criterion are
different in nature.

The results of developed ranking criteria are then compared
with those that are obtained from a fuzzy DEA model introduced
by Guo and Tanaka (2001). The fuzzy DEA model only gives
whether the DMUs are efficient under different possibility levels
h, as shown in Table 6. Here we only select the results of the max-

Table 1
DMUs with two uncertain inputs and two uncertain outputs.

DMUi 1 2 3 4 5

Input 1 Z(3.5,4.0,4.5) Z(2.9,2.9,2.9) Z(4.4,4.9,5.4) Z(3.4,4.1,4.8) Z(5.9,6.5,7.1)
Input 2 Z(2.9,3.1,3.3) Z(1.4,1.5,1.6) Z(3.2,3.6,4.0) Z(2.1,2.3,2.5) Z(3.6,4.1,4.6)
Output 1 Z(2.4,2.6,2.8) Z(2.2,2.2,2.2) Z(2.7,3.2,3.7) Z(2.5,2.9,3.3) Z(4.4,5.1,5.8)
Output 2 Z(3.8,4.1,4.4) Z(3.3,3.5,3.7) Z(4.3,5.1,5.9) Z(5.5,5.7,5.9) Z(6.5,7.4,8.3)

Table 2
Expected ranking results with different a.

Confidence level a DMU1 DMU2 DMU3 DMU4 DMU5

0.5 0.82 1 0.91 1 1
0.6 0.85 1 0.92 1 1
0.7 0.89 1 0.94 1 1
0.8 0.90 1 0.98 1 1
0.9 0.91 1 1 1 1

Table 3
Optimistic ranking results with different a.

Confidence level a DMU1 DMU2 DMU3 DMU4 DMU5

0.5 0.82 1 0.89 1 1
0.6 0.85 1 0.91 1 1
0.7 0.89 1 0.94 1 1
0.8 0.90 1 0.98 1 1
0.9 0.91 0.99 1 1 1

Table 4
Maximal ranking results with different a.

Confidence level a DMU1 DMU2 DMU3 DMU4 DMU5

0.5 0.10 0.50 0.31 0.50 0.50
0.6 0.06 0.40 0.26 0.40 0.40
0.7 0.03 0.30 0.22 0.30 0.30
0.8 0 0.20 0.19 0.20 0.20
0.9 0 0.08 0.10 0.10 0.10

Table 5
Ranking results for different criteria.

Ranking criteria a ¼ 0:5; 0:6; 0:7; 0:8 a ¼ 0:9

Expected ranking criterion DMU2, DMU4, DMU5, DMU3, DMU1 DMU3, DMU4, DMU5, DMU2, DMU1

Optimistic ranking criterion DMU2, DMU4, DMU5, DMU3, DMU1 DMU3, DMU4, DMU5, DMU2, DMU1

Maximal chance ranking criterion DMU2, DMU4, DMU5, DMU3, DMU1 DMU3, DMU4, DMU5, DMU2, DMU1
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imal ranking criteria, and give the efficiency of these DMUs for
comparison (see Table 7). We can find from the two tables that
most efficiency properties of DMUs in our developed method are
consistent with those derived from the fuzzy DEA model. However,
the differencies between two results also indicate our preferences
of evaluating DMUs are not exactly the same under different theo-
retical basis.

7. Conclusion

Due to its widely practical used background, data envelop-
ment analysis (DEA) has become a pop area of research. Since
the data cannot be precisely measured in some practical cases,
many paper have been published when the inputs and outputs
are uncertain. This paper gave some researches to uncertain
DEA based on uncertainty measure. Three uncertain DEA models
have been proposed, which leaded to three fully ranking criteria.
In order to simplify the computation of the uncertain DEA
model, we have presented their equivalent crisp models. The
numerical example illustrated the uncertain DEA models and
the ranking methods.
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In reliability engineering, there always exist uncertainties caused by the scarcity of data and information. Various
metrics are developed to measure reliability under uncertainty, including evidence-theory-based reliability,
interval-analysis-based reliability, fuzzy-interval-analysis-based reliability, posbist reliability and belief reliabili-
ty. As these fivemetrics are difficult to be fully understood, it is hard to select themost appropriate one for a spe-
cific condition. This paperwill propose anuncertain evaluatingmodel to conduct an objective evaluation on these
uncertaintymetrics. An evaluating index system is established from the aspects of capabilities and adaptabilities.
Uncertainty theory is adopted to deal with subjective uncertainties in the quantification process of the index sys-
tem. Then an evaluating method based on uncertain data envelopment analysis is proposed to provide decision-
makers with a succinct result for a given operational context. Finally, the evaluating method is illustrated with a
numerical example, which shows that final metric choices vary with different requirements.

© 2017 Published by Elsevier Ltd.

Keywords:
Uncertainty theory
Data envelopment analysis
Uncertainty metrics
Adaptabilities
Capabilities

1. Introduction

Due to the lack of data and information, uncertainties have a great
influence on the results of evaluation in reliability engineering. Various
metrics have been developed to measure reliability under uncertainty.
In this paper we consider evidence-theory-based reliability (EB reliabil-
ity) [1–3], interval-analysis-based reliability (IB reliability) [4–6], fuzzy-
interval-analysis-based reliability (FIB reliability) [7,8], posbist reliabili-
ty [9,10] and belief reliability [11,12].

EB reliability, IB reliability, FIB reliability are characterized as
probability-interval-based metrics. They differ from each other with
the method to construct the reliability intervals [13]. EB reliability is
widely used in reliability measurement for its flexible axiom system
and its ability to allow epistemic uncertainty and aleatory uncertainty
to be treated separately within a single framework without any as-
sumptions [14]. IB reliability can be used as a Probability Bounds (P-
Box) to calculate the maximum and minimum of failure probability
with the range of input parameters and is especially effective in situa-
tions in which one cannot specify parameter values for input distribu-
tions, precise probability distributions (shape) and dependencies
between input parameters [15]. IB reliability has been used to model
complex systems with limited information for static and dynamic

reliability problems [16,17]. FIB reliability, based on the Extension Prin-
ciple of Zadeh [18], allows the consideration of both aleatory and episte-
mic uncertainty simultaneously. In fuzzy problems, it is important to
approximate the expected values, and Li developed an effective algo-
rithm to approximate expected values for ordinary fuzzy problems
[19]. In practice, FIB reliability can be classified in two ways. Beer [8]
regarded FIB reliability as a combination of probability theory and
fuzzy set theory,where aleatory uncertainty and subjective probabilistic
information were captured in probabilistic models while imprecision in
the probabilistic model specification was described with fuzzy sets. On
the other hand, Aven et al. [7] described aleatory uncertainty by using
probability distributions and epistemic uncertainty by using the
possibility distributions in the framework of fuzzy set theory. Posbist
reliability, established by Cai, is based on the possibility theory [20].
Similar to EB reliability, posbist reliability also allows epistemic uncer-
tainty and aleatory uncertainty to be treated separately within a single
framework [14]. Posbist reliability is used to solve reliability of typical
system structures [21,22] and reliability of k-out-of-n system structures
[23]. Uncertainty theory was established by Liu as a branch of axiomatic
mathematics for modeling human uncertainty based on normality, du-
ality, subadditivity and product axioms [24]. Belief reliability is based
on uncertainty theory and is used as the uncertaintymeasure of the sys-
tem to perform specified functions within given time under given oper-
ating conditions. The influences of design margin, aleatory uncertainty
and epistemic uncertainty are considered in the evaluation framework
for component belief reliability [25].
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The five metrics have different desirable and undesirable features
from the aspects of people's demands and preferences [13]. Since
there is no historical data available to engineers, these features, de-
mands and preferences can be measured by knowledge and experience
of domain experts, which are subjective and uncertain. In 2007, Liu [24]
founded an uncertainty theory to deal with human's subjective uncer-
tainty by belief degree mathematically and in 2010, Liu [26] refined it
based on normality, duality, subadditivity and productmeasure axioms.
Therefore, we can regard features as uncertain variables and treat de-
mands and preferences as belief degrees.

Following the quantification of subjective uncertainties, a key point
is how to build a model to find the optimal solution in an objective
way. To deal with the optimal problems involving uncertain variables,
Liu proposed uncertain programming in 2009 [27]. Following uncertain
multi-objective programming [28], uncertain goal programming [28]
and uncertain multilevel programming [29], Wen et al. proposed a
data envelopment analysis (DEA) model in an uncertain environment
in 2014 [30]. DEA is a data oriented approach for evaluating the perfor-
mance of a set of peer entities called Decision Making Units (DMUs)
[31]. The definition of a DMU is generic and flexible. Because it requires
very few assumptions, DEA can also be implemented in caseswith com-
plex nature. Thus, we will propose an optimal evaluatingmethod based
on uncertainty theory and DEA model.

The remainder of this paper is organized as follows. Section 2 intro-
duces somebasic concepts about uncertainty theory. Section 3 describes
the evaluation indexes and the quantification process. In Section 4, an
uncertain evaluating model based on uncertain DEA method is pro-
posed to assist the selection of uncertaintymetrics. Thismodel is subse-
quently applied in Section 5 to select from thefive uncertainty reliability
metrics based on different requirements.

2. Preliminaries

Uncertainty theory was founded by Liu in 2007 [24] and refined by
Liu in 2010 [26]. Following that, uncertain process [32], uncertain differ-
ential equations [32], uncertain calculus [33] and uncertain program-
ming [27] were proposed. Uncertainty theory has been successfully
applied to solve various problems, including finance [34], reliability
[35] and graph [36]. In this section, we will state some basic concepts
and results on uncertain variables. These results are crucial for the re-
mainder of this paper.

Let Γ be a nonempty set, and let be a σ-algebra over Γ. Each element
Λ in is called an event. Liu [24] defined an uncertain measure by the
following axioms:

Axiom 1. (Normality axiom)fΓg ¼ 1 for the universal set Γ.

Axiom 2. (Duality axiom) fΛg þ fΛCg ¼ 1for any event Λ.

Axiom 3. (Subadditivity axiom) For every countable sequence of
events Λ1 ,Λ2,⋯ , we have

∪
∞

i¼1
Λi

� �
≤ ∑

∞

i¼1
Λif g: ð1Þ

Furthermore, Liu [33] defined a product uncertain measure by the
fourth axiom:

Axiom 4. (Product axiom) Let ðΓi; i; iÞbe uncertain spaces for i=1,2,⋯.
The product uncertain measure is an uncertain measure satisfying

∏
∞

i¼1
Λi

� �
¼ ∧

∞

i¼1
i Λif g ð2Þ

where i are σ-algebras over Γi, and Λiare arbitrarily chosen events
from i for i=1,2,⋯, respectively.

Definition 1. (see Liu [24]). Let Γ be a nonempty set, let be a σ-algebra
over Γ, and let be an uncertainmeasure. Then the tripletðΓ; ; Þ is called an
uncertainty space.

Definition 2. (see Liu [24]). An uncertain variable is ameasurable func-
tion ξ from an uncertainty space ðΓ; ; Þ to the set of real numbers, i.e., for
any Borel set B of real numbers, we have

ξ∈Bf g ¼ γ∈Γjξ γð Þ∈Bf g∈: ð3Þ

Definition 3. (see Liu [24]). The uncertainty distributionΦ of an uncer-
tain variable ξ is defined by

Φ xð Þ ¼ ξ≤xf g ð4Þ

for any real number x.

Example 4. An uncertain variable ξ is called normal if it has a normal
uncertainty distribution

Φ xð Þ ¼ 1þ exp
π e−xð Þffiffiffi

3
p

σ

� �� �−1

; x∈ ð5Þ

denoted by Nðe;σÞ where e and σ are real numbers with σN0.

Definition 5. (see Liu [24]). Let ξ be an uncertain variable with regu-
lar uncertainty distributionΦ(x). Then the inverse functionΦ‐1(α) is
called the inverse uncertainty distribution of ξ.

Example 6. The inverse uncertainty distribution of normal uncertain
variable Nðe;σÞ is

Φ−1
x αð Þ ¼ eþ σ

ffiffiffi
3

p

π
ln

α
1−α

: ð6Þ

3. Evaluation indexes

3.1. Determination of evaluation indexes

In reliability engineering, engineers hope that the method is com-
plete in theory and practical in application. Theoretical completeness
determines types of problem ametric can solve and forms of conclusion
a metric can draw, while engineering practicability reflects difficulty
and complexity when utilizing a metric.

In this paper, six types of adaptabilities are used to describe theoret-
ical completeness and three types of capabilities are used to represent
engineering practicability. The index system consisting of adaptabilities
and capabilities is tabulated in Table 1.

3.2. Quantification of evaluation indexes

Both adaptabilities and capabilities can merely be measured by the
knowledge and experience of domain experts. To quantify expert's
knowledge and experience, this paper adopts a questionnaire survey
process [37] to convert knowledge and experience into concrete data.
An example is delivered to interpret this process.
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Example 7. The consultation process of evaluating adaptability to spare
data.

Q1: The score of EB reliability's adaptability to spare data is from 0 to
100, what do you think is a likely score?

A1: 90.
Q2: Towhat extend do you think that evidence theory's adaptability

to spare data is less than 90?
A2: 80%. (an expert's experimental data (90,0.8) is acquired).
Q3: Is there another number this score may be?
A3: 70.
Q4: Towhat extend do you think that evidence theory's adaptability

to spare data is less than 70?
A4: 50%. (an expert's experimental data (70,0.5) is acquired).
Q5: Is there another number this score may be? If yes, what is it?
A5: 40.
Q6: Towhat extend do you think that evidence theory's adaptability

to spare data is less than 40?
A6: 40%. (an expert's experimental data (40,0.4) is acquired).
Q7: Is there another number this score may be? If yes, what is it?
A7: 10.
Q8: Towhat extend do you think that evidence theory's adaptability

to spare data is less than 10?
A8: 5%. (an expert's experimental data (10,0.05) is acquired).
Q9: Is there another number this score may be? If yes, what is it?
A9: No idea.
By using the questionnaire survey, four expert's experimental data

of evidence theory's adaptability to spare data are acquired from the do-
main expert,

90;0:9ð Þ; 70;0:5ð Þ; 40;0:4ð Þ; 10;0:05ð Þ: ð7Þ

Theorem 8. Maximum Entropy Principle (see Chen and Dai [38]) Let ξ
be an uncertain variable with finite expected value e and variance σ2.
Then

H ξ½ �≤ πσffiffiffi
3

p ð8Þ

and the equality holds if ξ is a normal uncertain variable with ex-
pected value e and variance σ2, i.e., Nðe;σÞ.

According to the maximum entropy principle, we assume that the
adaptabilities and capabilities follow normal uncertainty distributions.

Principle of least squares [26] can be adopted to determine the un-
certainty distributions of uncertain variable Φ(x).

Definition 9. Principle of least squares (see Liu [26]) If the expert's ex-
perimental data

x1;α1ð Þ; x2;α2ð Þ;⋯; xn;αnð Þ ð9Þ

are obtained and the vertical direction is accepted, then we have

min
θ

∑
n

i¼1
Φ xijθð Þ−αið Þ2: ð10Þ

The optimal solution θ̂ of Eq. (10) is called the least squares estimate

of θ, and then the least squares uncertainty distribution is Φðxijθ̂Þ.

4. Uncertainty evaluating model

The uncertain evaluatingmodel in this section is based on the uncer-
tain DEAmodel [30]. Similar to traditional DEAmodel [39], the objective
of the uncertain DEAmodel is tomaximize the total slacks in inputs and
outputs subject to the constraints.

The developed model chooses inputs and outputs from the index
system as follows: the inputs of the model are capabilities denoted by
Cki, where Cki is ith capability of kth candidate method evaluated by ex-
perts. The outputs of the model are adaptabilities represented by Akj,
where Akj is jth capability of kth candidatemethod evaluated by experts.

Relative symbols and notations are introduced briefly as follows:
DMUk: the kth DMU, k=1,2,⋯ ,5;
DMU0: the target DMU;
Ck1: uncertain variable representing learning difficulty,

k=1,2,⋯ ,5;
Ck2: uncertain variable representing application difficulty,

k=1,2,⋯ ,5;
Ck3: uncertain variable representing complexity, k=1,2,⋯ ,5;
Φki(x): the uncertain distribution of Cki, i=1,2,3, k=1,2,⋯ ,5;
C0i: the uncertain inputs of the target DMU0, i=1,2,3;
Φ0i(x): the uncertain distribution of C0i, i=1,2,3;
α1: the requirement of learning difficulty;
α2: the requirement of application difficulty;
α3: the requirement of complexity;
Ak1: uncertain variable representing adaptability to mixed uncer-

tainty, k=1,2,⋯ ,5;
Ak2: uncertain variable representing adaptability to separate uncer-

tainty, k=1,2,⋯ ,5;
Ak3: uncertain variable representing adaptability to big data,

k=1,2,⋯ ,5;
Ak4: uncertain variable representing adaptability to spare data,

k=1,2,⋯ ,5;
Ak5: uncertain variable representing adaptability to duality axiom,

k=1,2,⋯ ,5;
Ak6: uncertain variable representing adaptability to slow attenua-

tion, k=1,2,⋯ ,5;
Ψkj(x): the uncertain distribution Akj, j=1,2,⋯ ,6, k=1,2,⋯ ,5;
A0j: the uncertain outputs of the target DMU0, j=1,2,⋯ ,6;
Ψ0j(x): the uncertain distribution of A0j, j=1,2,⋯ ,6;
β1: the requirement of adaptability to mixed uncertainty;
β2: the requirement of adaptability to separate uncertainty;
β3: the requirement of adaptability to big data;
β4: the requirement of adaptability to spare data;
β5: the requirement of adaptability to duality axiom;
β6: the requirement of adaptability to slow attenuation.

Table 1
Description of index system.

Notation Meaning Description

A1 Adaptability to
mixed uncertainty

Measures how well the metric can adapt to the
uncertainty problem which solves aleatory and
epistemic uncertainty in an unseparated way.

A2 Adaptability to
separate uncertainty

Measures how well the metric can adapt to the
uncertainty problem which solves aleatory and
epistemic uncertainty separately.

A3 Adaptability to big
data

Measures how well the metric can adapt to the
uncertainty problem in terms of big data.

A4 Adaptability to
spare data

Measures how well the metric can adapt to the
uncertainty problem in terms of spare data.

A5 Adaptability to
duality axiom

Measures whether the metric can satisfy the
duality axiom.

A6 Adaptability to slow
attenuation

Measures whether the metric can compensate
the conservatism in the estimations of the
component-level reliability metrics.

C1 Learning difficulty Measures how difficult it is for engineers to learn
the candidate metrics.

C2 Application
difficulty

Measures how difficult it is for engineers to
apply the candidate metrics.

C3 Complexity Measures how complex it is in computation
process.
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The evaluating model is written as:

max θ ¼ ∑
3

i¼1
s−i þ∑

6

j¼1
sþj

subject to :

∑
5

k¼1
Ckiλk≤C0i−s−i

( )
≥1−αi; i ¼ 1; 2;3

∑
5

k¼1
Akjλk≥A0 j þ sþj

( )
≥1−β j; j ¼ 1; 2;…6

∑
5

k¼1
λk ¼ 1

λk≥0; k ¼ 1;2;⋯;5
s−i ≥0; i ¼ 1;2;3
sþj ≥0; j ¼ 1;2;…;6;

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

ð11Þ

wheresi−and sj
+ represent input and output slacks, respectively.

In uncertainty theory, αi and βj are regarded as belief degrees, which
measures the strength with which we believe the event will happen. In
the proposed model, αi and βj are used to represent the requirement
level from the demand side.

Theorem 10. (see Wen et al. [30]) Assume that ~x1i; ~x2i;⋯; ~xniare inde-
pendent uncertain inputs with regular uncertainty distributions Φ1i , -
Φ2i ,⋯ ,Φni for each i, i=1,2 ,⋯ ,p,and ~y1i; ~y2i;⋯; ~yni are independent
uncertain outputs with uncertainty distribution Ψ1i ,Ψ2i ,⋯ ,Ψnifor
each j, j=1,2,⋯ ,q. Then

∑
n

k¼1
~xkiλk ¼ ~x0i−s−i

� �
≥α; i ¼ 1;2;…; p

∑
n

k¼1
~ykjλk ¼ ~y0 j þ sþi

� �
≥α; j ¼ 12;…; q

ð12Þ

holds if and only if

∑
n

k¼1;k≠0
λkΦ

−1
ki αð Þ þ λ0Φ−1

0i 1−αð Þ≤λ0Φ−1
0i 1−αð Þ−s−i ; i ¼ 1;2;…; p

∑
n

k¼1;k≠0
λkΨ

−1
kj 1−αð Þ þ λ0Ψ−1

0 j αð Þ≤λ0Ψ−1
0 j αð Þ þ sþj ; j ¼ 1;2;…; q:

ð13Þ

According to Theorem 10, the above model holds if and only if

max θ ¼ ∑
3

i¼1
s−i þ∑

6

j¼1
sþj

subject to :

∑
5

k¼1;k≠0
λkΦ

−1
ki 1−αið Þ þ λ0Φ

−1
0i αið Þ≤Φ−1

0i αið Þ−s−i ; i ¼ 1;2;3

∑
5

k¼1;k≠0
λkΨ

−1
kj β j

	 
þ λ0Ψ
−1
0 j 1−β j

	 

≥Ψ−1

0 j 1−β j
	 
þ sþj ; j ¼ 1;2;…;6

∑
5

k¼1
λk ¼ 1

λk≥0; k ¼ 1;2;⋯;5
s−i ≥0; i ¼ 1;2;3
sþj ≥0; j ¼ 1;2;⋯;6;

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
ð14Þ

wheresi−and sj
+ represent input and output slacks, respectively.

Theorem 11. (see Wen [40]) The objective value in Eq. (14) is an in-
creasing function of requirements αiand βj.

According to Theorem 11, we can find that the higher the require-
ments are, the bigger the optimal result θ∗ is. In other words, the index
with a higher requirement level is more important than the index
with a lower requirement level. Therefore, the proposed model can be
used tomeasure the different realities by adjusting the levels of require-
ment for different indicators (inputs and outputs).

Evaluating criteria: The smaller the optimal result θ∗ is, the more ap-
propriate the candidate metric is.

According to the evaluating criteria, the candidate metric with the
minimal optimal result is regarded as the most appropriate choice.
However, it is possible to get the minimum value for multiple optimal
results at the same time. This is because the candidate metrics all have
obvious advantages at the given requirement level. In that case, decision
makers can make the final choice based on their preferences.

5. A numerical example

The proposed uncertain DEA model for uncertainty metrics is ex-
plained using a series of caseswhich are used to describe the effect of re-
quirements and the process of decision-making.

Four experts were invited to participate in the process of expert elic-
itation. As an illustration, Table 2 shows the mean scores of belief reli-
ability evaluated by four experts, which are used to approximate
uncertainty distributions of the outputs of belief reliability.

According to the maximum entropy principle, we assume that the
input and output variables follow normal uncertainty distributions as
given in Eq. (5). The parameters of input and output variables are esti-
mated by principle of least squares and the results are shown in Table 3.

There are four cases used to describe four different requirements. In
case 1, adaptability to mixed uncertainty is less weighty. In case 2,
adaptability to slow attenuation is less important. In case 3, learning
difficulty has fewer restrictions. In case 4, application difficulty,
adaptability to separate uncertainty and spare data aremore important.
Table 4 shows precise numerical description of the above requirements.
Table 5 shows the final optimal results.

According to the evaluating criteria, the recommended metrics for
case 1, 2 and 4 are EB reliability, FIB reliability and posbist reliability,

Table 2
Scores of the outputs of belief reliability.

10 30 70 90

A1 0.02 0.31 0.44 0.74
A2 0.14 0.15 0.27 0.85
A3 0.07 0.33 0.46 0.77
A4 0.40 0.59 0.59 0.85
A5 0.03 0.06 0.59 0.93
A6 0.29 0.49 0.60 0.92

Table 3
Parameters of input and output variables.

k 1 2 3 4 5

e σ e σ e σ e σ e σ

Ck1 28.24 39.38 17.73 41.54 40.91 46.73 43.89 43.70 27.84 45.98
Ck2 39.38 39.33 32.26 39.31 42.80 36.40 40.62 42.72 39.44 43.10
Ck3 40.75 36.49 36.59 45.12 56.74 45.59 37.08 37.62 38.70 37.12
Ak1 79.66 59.94 47.31 60.54 67.68 93.95 79.41 63.92 68.16 49.82
Ak2 65.70 25.11 51.88 77.90 31.85 53.08 67.29 55.89 77.38 13.45
Ak3 55.64 52.87 65.01 89.80 78.65 156.8272.89 64.32 64.23 52.27
Ak4 50.28 66.33 48.62 35.60 60.27 33.67 71.11 57.28 24.97 94.68
Ak5 22.15 72.26 76.29 15.40 71.49 42.41 191.42 129.56 65.17 20.39
Ak6 79.58 124.79120.45 71.62 125.68 173.7670.31 102.96 38.27 62.51

Table 4
Numerical description of the requirements.

α1 α2 α3 β1 β2 β3 β4 β5 β6

Case 1 0.9 0.9 0.9 0.5 0.9 0.9 0.9 0.9 0.9
Case 2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.5
Case 3 0.5 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Case 4 0.6 0.9 0.6 0.6 0.9 0.6 0.9 0.5 0.6
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respectively. Case 3 consists of two alternatives, IB reliability and belief
reliability.

Case studies indicate that EB reliability is the most recommended
choice when adaptability to mixed uncertainty is less important, FIB re-
liability is the most recommended choice when adaptability to slow at-
tenuation is less important, IB reliability and belief reliability are the
most recommended choices considering learning difficulty and posbist
reliability is the most recommended choice considering application dif-
ficulty, adaptability to separate uncertainty and spare data.

From the case study, it is found that the proposed uncertainty opti-
mal model is operative for both single requirement and multi-
requirements. Further, it should be noted that there could be more
than one recommended metrics according to the optimal results, in
which case the final choice can depend on decision-maker preferences.

6. Conclusions

In this paperwehave proposed an uncertain evaluatingmodel based
on data envelopment analysis for uncertainty metrics in reliability.
From the view of theoretical completeness and engineering practicality,
this paper has developed an evaluating index system including three ca-
pabilities and six adaptabilities. Since the indexes can only bemeasured
by knowledge and experience of domain experts, a questionnaire sur-
vey process has been adopted to acquire empirical data. For the purpose
of improving the effectiveness of decision-making, an uncertain optimal
model has been developed with indicators from natural characteristics
of metrics and the requirements from the demand side. The proposed
model can be used to measure the different realities by adjusting the
level of requirements and provide a new method in the selection
among the uncertainty metrics in reliability.
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ABSTRACT Model-based reliability analysis and assessment methods rely on models, which are assumed
to be precise, to predict reliability. In practice, however, the precision of the model cannot be guaranteed
due to the presence of epistemic uncertainty. In this paper, a new reliability metric, called belief reliability,
is defined to explicitly account for epistemic uncertainty in model-based reliability analysis and assessment.
A new method is developed to explicitly quantify epistemic uncertainty by measuring the effectiveness
of the engineering analysis and assessment activities related to reliability. To evaluate belief reliability,
an integrated framework is presented where the contributions of design margin, aleatory uncertainty, and
epistemic uncertainty are integrated to yield a comprehensive and systematic description of reliability. The
developed methods are demonstrated by two case studies.

INDEX TERMS Reliability, physics-of-failure, epistemic uncertainty, model uncertainty, belief reliability.

ACRONYMS
AUF Aleatory Uncertainty Factor
ESV Electrohydraulic Servo Valve
EU Epistemic Uncertainty
EUF Epistemic Uncertainty Factor
FMECA Failure Mode, Effect and Criticality Analysis
FRACAS Failure Report, Analysis, and Corrective

Action System
HC Hydraulic Cylinder
HSA Hydraulic Servo Actuator
LTB Larger-the-better
NTB Nominal-the-better
RGT Reliability Growth Test
RET Reliability Enhancement Test
RST Reliability Simulation Test
SBC Single Board Computer
STB Smaller-the-better

NOTATIONS
m Performance margin
p Performance parameter
pth Functional threshold
RB Belief reliability
Rp Probabilistic reliability
md Design margin

σm Aleatory uncertainty factor
σe Epistemic uncertainty factor
y Effectiveness of the EU-related engineering activities

I. INTRODUCTION
Reliability refers to the ability of a component or system
to perform a required function for a given period of time
when used under stated operating conditions [1]. Tradition-
ally, reliability is measured by the probability that functional
failure does not occur in the considered period of time and
failure data are used for its estimation based on statistical
methods [2]. In practice, however, failure data are often
scarce (if available at all), which defies the use of classical
statistical methods and challenges Bayesian methods with
respect to the assumption of subjective prior distributions [3].
Due to the problem of limited failure data, model-based
methods (cf. physics-of-failure (PoF) methods [4], structural
reliability methods [5], etc.) are widely applied to predict reli-
ability, by deterministically describing the degradation and
failure processes using deterministic failure behavior models.
More specifically, it is assumed that:

1) the failure behavior of a component or a system can be
described by a deterministic model;

2) random variations in the variables of the deterministic
model are the sole source of uncertainty.
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The probabilistic quantification of reliability is, then,
obtained by propagating uncertainties through the
model analytically or numerically, e.g., by Monte Carlo
simulation [6]–[8].

The random variations represent the uncertainty inher-
ent in the physical behavior of the system and are referred
to as aleatory uncertainty [9]. However, the model-based
methods are also subject to epistemic uncertainty due
to incomplete knowledge on the degradation and failure
processes [10], [11]. According to Aven and Zio [12] and
Bjerga et al. [13], epistemic uncertainty may arise because:
1) the deterministic model cannot exactly describe the

failure process, e.g., due to incomplete understanding
of the failure causes and mechanisms (model uncer-
tainty, also known as structural uncertainty);

2) the precise values of the model parameters might not
be accurately estimated due to lack of data in the actual
operational and environmental conditions (parameter
uncertainty).

In this paper, we introduce a new reliability metric, belief
reliability, to explicitly consider the effect of epistemic uncer-
tainty on the model-based methods. For illustrative purposes,
we consider only model uncertainty in this paper. However,
the framework can be easily extended to deal with parameter
uncertainty.

In literature, various approaches have been developed to
consider model uncertainty. Mosleh and Droguett reviewed
a number of approaches for model uncertainty assessment
and compared them in terms of theoretical foundations and
domains of application [14], [15]. Among them, the alternate
hypotheses approach and the adjustment factor approach are
two most widely applied ones [16]. The alternate hypothe-
ses approach identifies a family of possible alternate mod-
els and probabilistically combines the predictions of them
based on Bayesian model averaging, where the probability
of each model is evaluated from experimental data or expert
judgements [17], [18]. Apostolakis [19] addressed the issue
of model uncertainty in probabilistic risk assessment using
the alternate hypotheses approach. Park and Grandhi [20]
quantified the model probability in the alternate hypotheses
approach by the measured deviations between experimen-
tal data and model predictions. In [21], two crack models
were probabilistically combined using the alternate hypothe-
ses approach to estimate the failure probability of a butt
weld. Other applications of the alternate hypotheses approach
include sediment transport models [22], identification of
benchmark doses [23], precipitation modeling [24], etc.
In the adjustment factor approach, the model uncertainty

is addressed by modifying a benchmark model (the one
that we have highest confidence in) with an adjustment
factor, which is assumed to be uncertain, and is either
added to or multiplied by the prediction results of the
model [16], [25]. In [26], the adjustment factor approach
was used to combine experts’ estimates according to
Bayes’ theorem. Zio and Apostolakis [16] used the
approach to assess the risk of radioactive waste repositories.

Fischer and Grandhi [27] applied an adjustment factor to
low-fidelities models so as to scale them to high-fidelity
models. In a series of studies conducted in [25] and [28]–[30],
the adjustment factor approach was combined with the alter-
nate hypotheses approach by introducing an adjustment factor
to quantify the uncertainty in each alternate model; the model
uncertainty was, then, evaluated by averaging all the models
according to the alternate hypotheses approach.

The alternate hypotheses approach requires enumerat-
ing a set of mutually exclusive and collectively exhaustive
models [15]. In the case of model-based reliability methods,
however, it is impossible for us to enumerate all the pos-
sible models, which limits the application of the alternate
hypotheses approach. Hence, we adopt the adjustment factor
approach in this paper to develop a new reliability metric
to describe the effect of epistemic uncertainty (model uncer-
tainty) on the model-based reliability methods.

In the adjustment factor approaches, epistemic uncer-
tainty is quantified by the adjustment factor, which is often
determined based on validation test data (for example,
see [18] or [30]). In practice, however, due to limited time
and resources, it is hard, if not impossible, to gather suf-
ficient validation test data. Resorting to expert judgements
might offer an alternative solution (for example, see [16]),
but they could be criticized for being too subjective. On the
other hand, epistemic uncertainty relates to the knowledge
on the component or system functions and failure behav-
iors: as this knowledge is accumulated, epistemic uncertainty
is reduced. In the life cycle of a component or system,
the knowledge is gained by implementing a number of relia-
bility analysis-related engineering activities, whose purpose
is to help designers better understand potential failure modes
and mechanisms. For example, through Failure Mode, Effect
and Criticality Analysis (FMECA), potential failure modes
and their effects could be identified, so that the designer
can better understand the product’s failure behaviors [31].
Similar engineering activities include Failure Report, Anal-
ysis, and Corrective Action System (FRACAS) [32], Reli-
ability Growth Test (RGT) [33], Reliability Enhancement
Test (RET) [32], Reliability Simulation Test (RST) [34], [35],
etc. In this paper, we develop a new quantification method
for the epistemic uncertainty in the adjustment factor method,
based on the effectiveness of these engineering activities.

The contributions of this paper are summarized as
follows:

1) a new reliability metric, the belief reliability, is devel-
oped to explicitly consider epistemic uncertainty in the
model-based reliability methods;

2) a newmethod is developed to quantify epistemic uncer-
tainty, based on the effectiveness of the engineering
activities related to the reliability analysis and assess-
ment of components and systems;

3) a method is developed to evaluate the belief reliability
of components and systems, based on the integration
of design margin, aleatory uncertainty and epistemic
uncertainty.
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The rest of the paper is organized as follows. In Section II,
belief reliability is defined to account for the effect of
epistemic uncertainty in model-based reliability methods.
In Section III, epistemic uncertainty is quantified based on
the effectiveness of the related engineering activities and a
belief reliability evaluation method is developed. Section IV
presents two case studies to demonstrate the developed meth-
ods. Finally, the paper is concluded in Section V with a
discussion on future works.

II. DEFINITION OF BELIEF RELIABILITY
In this section, we introduce a new metric of reliability, belief
reliability, to explicitly account for the influence of epistemic
uncertainty onmodel-based reliability methods.We start with
a brief introduction of the model-based reliability method
in subsection II-A. Then, belief reliability is defined in
subsection II-B.

A. MODEL-BASED RELIABILITY METHODS
For a general description of model-based reliability methods,
we introduce the concepts of performance parameter and
performance margin:
Definition 1 (Performance Parameter): Suppose failure

occurs when a parameter p reaches a threshold value pth.
Then, the parameter p is referred to as a performance param-
eter, while the threshold value pth is referred to as the func-
tional failure threshold associated with p.
According to Definition 1, performance parameters and

functional failure thresholds define the functional require-
ments on a system or a component, for which three categories
exist in practice:

1) Smaller-the-better (STB) parameters: if failure occurs
when p ≥ pth, then, the performance parameter p is a
STB parameter.

2) Larger-the-better (LTB) parameters: if failure occurs
when p ≤ pth, then, the performance parameter p is
a LTB parameter.

3) Nominal-the-better (NTB) parameters: if failure occurs
when p ≤ pth,L or p ≥ pth,U , then, the performance
parameter p is a NTB parameter.

Definition 2 (Performance Margin): Suppose p is a per-
formance parameter and pth is its associated functional failure
threshold; then,

m =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pth − p
pth

, if p is STB,

p− pth
pth

, if p is LTB,

min
(
pth,U − p
pth,U

,
p− pth,L
pth,L

)
, if p is NTB

(1)

is defined as the (relative) performance margin associated
with the performance parameter p.
Remark 1: From Definition 2, performance margin is a

unitless quantity and failure occurs whenever m ≤ 0.
In the model-based reliability methods, it is assumed that

the performance margin can be described by a deterministic

model, which is derived based on knowledge of the functional
principles and failure mechanisms of the component [5], [36].
Conceptually, we assume that the performance margin model
has the form

m = gm(x), (2)

where gm(·) denotes the deterministic model which predicts
the performance margin and x is a vector of input variables.

In the design and manufacturing processes of a product,
there aremany uncertain factors influencing the input x of (2).
Thus, the values of x may vary from product to product of
the same type. Usually, this product-to-product variability is
described by assuming that x is a vector of random vari-
ables with given probability density functions. Then, m is
also a random variable and reliability Rp is defined as the
probability that m is greater than zero. The subscript p is
used to indicate that Rp is a probability measure. Given the
probability density function of x, denoted by fX (·), Rp can be
calculated by:

Rp = Pr (gm(x) > 0) =
∫

· · ·
∫
gm(x)>0

fX (x)dx. (3)

B. DEFINITION OF BELIEF RELIABILITY
Belief reliability is defined in this subsection to explicitly
account for the effect of epistemic uncertainty inmodel-based
reliability methods. For this, we first define design margin
and Aleatory Uncertainty Factor (AUF):
Definition 3 (Design Margin): Suppose the performance

margin of a component or a system can be calculated by (2).
Then, design margin md is defined as

md = gm(xN ), (4)

where xN is the nominal values of the parameters.
Definition 4 (Aleatory Uncertainty Factor (AUF)): Sup-

pose Rp is the probabilistic reliability calculated from the
performance margin model using (3). Then, AUF σm is
defined as

σm = md
ZRp

, (5)

where ZRp is the value of the inverse cumulative distribution
function of a standard normal distribution evaluated at Rp.

Further, let equivalent design marginME to be

ME = md + εm, (6)

where εm ∼ Normal(0, σ 2
m). It is easy to verify that ME ∼

Normal(md , σ 2
m) and Rp can be calculated as the probabil-

ity that ME > 0, as shown in Figure 1 (a). Therefore,
the probabilistic reliability can be quantified by the equivalent
performance margin and further by md and σm, where

• md describes the inherent reliability of the product
when all the input variables take their nominal val-
ues. Graphically, it measures the distance from the
center of the equivalent performance margin distribu-
tion to the boundaries of the failure region, as shown
in Figure 1 (a);
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FIGURE 1. Epistemic uncertainty effect on the distribution of the
equivalent performance margin. (a) Aleatory distribution.
(b) Effect of epistemic uncertainty.

• σm accounts for the uncertainty resulting from the
product-to-product random variations, e.g., the tolerance
of manufacturing processes, the variability in material
properties, etc. Usually, these random variations are
controlled by engineering activities such as tolerance
design, environmental stress screening, stochastic pro-
cess control, etc [11].

To further account for the effect of epistemic uncertainty,
it is assumed that:

ME = md + εm + εe, (7)

where εe is an adjustment factor [16] and εe ∼
Normal(0, σ 2

e ). Parameter σe is defined as Epistemic Uncer-
tainty Factor (EUF) and it quantifies the effect of epis-
temic uncertainty. The physical meaning of (7) is explained
in Figure 1 (b): epistemic uncertainty introduces additional
dispersion to the aleatory distribution of the equivalent per-
formance margin. The degree of the dispersion is related to
the knowledge we have on the failure process of the product,
i.e., the more knowledge we have, the less value σe takes.

Considering the assumption made in (7), we can, then,
define the belief reliability as follows:
Definition 5 (Belief Reliability): The reliability metric

RB = �N

(
md√

σ 2
m + σ 2

e

)
(8)

is defined as belief reliability, where �N (·) is the cumulative
distribution function of a standard normal random variable.

Belief reliability can be interpreted as our belief degree on
the product reliability, based on the knowledge of design mar-
gin, aleatory uncertainty and epistemic uncertainty. In the fol-
lowing, we discuss respectively how design margin, aleatory
uncertainty and epistemic uncertainty influence the value of
belief reliability.
Discussion 1: It is obvious from (8) that RB ∈ [0, 1],

where
• RB = 0 indicates that we believe for sure that a com-
ponent or system is unreliable, i.e., it cannot perform its
desired function under stated time period and operated
conditions.

• RB = 1 indicates that we believe for sure that a com-
ponent or system is reliable, i.e., it can perform its
desired function under stated time period and operated
conditions.

• RB = 0.5 indicates that we are most uncertain about the
reliability of the component or system [37].

• RB,A > RB,B indicates that we believe that product A is
more reliable than product B.

Discussion 2 (Variation of RB With the Design Margin):
From (8), it is easy to see that RB is an increasing function
of md , as illustrated by Figure 2, which is in accordance with
the intuitive fact that when the design margin is increased,
the component or system becomes more reliable.

FIGURE 2. Influence of md on RB.

Besides, it can be verified from (8) that if md = 0,
RB = 0.5. This is because when md = 0, the product is at
borderline between working and failure. Therefore, we are
most uncertain about its reliability (For details, please refer
to the maximum uncertainty principle in [37]).
Discussion 3 (Variation of RB With the Aleatory

Uncertainty): In (8), the effect of aleatory uncertainty is
measured by the AUF, σm. Figure 3 shows the variation of RB
with σm, when σe is fixed, for different values of md . It can
be seen from Figure 3 that when md and σe are fixed,
RB approaches 0.5 as σm increases to infinity. The result is
easy to understand, since σm → ∞ indicates the fact that
uncertainty has the greatest influence.
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FIGURE 3. Variation of RB with σm.

Discussion 4 (Variation of RB With the Epistemic
Uncertainty): In (8), the effect of epistemic uncertainty is
measured by the EUF, σe. The variation of RB with respect
to σe is illustrated in Figure 4, with σm fixed to 0.2. From
Figure 4, we can see that when σe → ∞, RB also
approaches 0.5, for the same reason as the AUF.

FIGURE 4. Variation of RB with σe.

Besides, it can be shown from (8) and assumption (3) that
as σe → 0, RB approaches the Rp calculated by the model-
based reliability methods using equation (3). This is a natural
result since σe = 0 is the ideal case for which there is no
epistemic uncertainty, so that the product failure behavior is
accurately predicted by the deterministic performancemargin
model and the aleatory uncertainty.

In practice, we always havemd ≥ 0 and σe > 0. Therefore,

RB ≤ Rp (9)

where Rp is the probabilistic reliability predicted by (3) under
the same conditions. Equation (9) shows that using belief
reliability yields a more conservative evaluation result than
using the probabilistic reliability, because belief reliability

considers the effect of insufficient knowledge on the relia-
bility evaluations.

III. EVALUATION OF BELIEF RELIABILITY
In this section, we discuss how to evaluate the belief reli-
ability for a given product. A general framework for belief
reliability evaluation is first given in subsection III-A. Then,
a method is presented for evaluating epistemic uncertainty
and determining the value of the EUF.

A. BELIEF RELIABILITY EVALUATION
The RB defined in (8) incorporates the contributions of design
marginmd , aleatory uncertainty (represented by σm) and epis-
temic uncertainty (represented by σe). The contributions from
the three factors should be evaluated individually and then,
combined to evaluate the belief reliability of a component.
Detailed procedures are presented in Figure 5.

FIGURE 5. Procedures for component belief reliability evaluation.

Four steps comprise the evaluation procedure:

1) PERFORMANCE MARGIN MODEL DEVELOPMENT
First, a deterministic performance margin model is developed
to predict the value of the performance marginm. The perfor-
mance margin model can be developed based on knowledge
of underlying functional principles and physics of failures.
For a detailed discussion on how to develop performance
margin models, readers might refer to [38] and [39].

2) ALEATORY UNCERTAINTY EVALUATION
Next, the values of md and σm are determined. The value of
md is calculated based on (4), where all the input parameters
of the performance margin model take their nominal values.
To calculated the value of σm, the probabilistic reliability
Rp is calculated first by propagating aleatory uncertainty
in the model parameters according to (3). Either structural
reliability methods [5] or Monte Carlo simulations [7] might
be used for the calculation. Then, σm can be calculated by
combining md and Rp using (5).

3) EPISTEMIC UNCERTAINTY EVALUATION
The value of σe is, then, determined by evaluating the effect
and potential impact of epistemic uncertainty. In practice,
epistemic uncertainty relates to the knowledge on the com-
ponent or system functions and failure behaviors: as this
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TABLE 1. Examples of EU-related engineering activities.

knowledge is accumulated, epistemic uncertainty is reduced.
Hence, in this paper, we relate epistemic uncertainty to our
state of knowledge on the product and its failure process and
assess the value of σe based on the effectiveness of engineer-
ing activities that generate our knowledge base. Details on
how to evaluate the value of σe is given in Section III-B.

4) BELIEF RELIABILITY EVALUATION
Following steps 1) - 3), the values ofmd , σm and σe are deter-
mined. Then, the belief reliability can be evaluated according
to (8).

B. QUANTIFICATION OF EPISTEMIC UNCERTAINTY
In this section, we develop a method to quantify epis-
temic uncertainty based on the state of knowledge.
In subsection III-B1, we discuss how to evaluate the state
of knowledge, and then, in subsection III-B2, we quantify the
effect of epistemic uncertainty in terms of σe.

1) EVALUATION OF THE STATE OF KNOWLEDGE
In the life cycle of a component or system, the knowledge on
the products’ failure behavior is gained by implementing a
number of engineering activities of reliability analysis, whose
purposes are to help designers better understand potential
failure modes and mechanisms. In this paper, we refer to
these engineering activities as epistemic uncertainty-related
(EU-related) engineering activities. Table 1 lists some com-
monly encountered EU-related engineering activities and dis-
cusses their contributions to gaining knowledge and reduc-
ing epistemic uncertainty, where FMECA stands for Failure
Mode, Effect and Criticality Analysis, FRACAS stands for
Failure Reporting, Analysis, and Corrective Action System,
RET stands for Reliability Enhancement Test, RGT stands
for Reliability Growth Test and RST stands for Reliability
Simulation Test.

In this paper, we make an assumption that the state
of knowledge is directly related to the effectiveness
of the EU-related engineering activities. Suppose there
are n EU-related engineering activities in a product life
cycle. Let yi, i = 1, 2, · · · , n denote the effectiveness of the
EU-related engineering activities, where yi ∈ [0, 1];
the more effective the engineering activity is, the larger value
the corresponding yi takes. The values of yi are determined by

asking experts to evaluate the effectiveness of the EU-related
engineering activities, based on a set of predefined evaluation
criteria.

For example, the effectiveness of FMECA can be eval-
uated based on eight elements, as shown in Table 2. For
each element, experts are invited to evaluate their perfor-
mances according to the criteria listed in Table 2. Based on
the evaluated performance, a score can be assigned to each
element, denoted by S1, S2, · · · , S8. Then, the effectiveness
of FMECA, denoted by y1, can be determined by

y1 = 1
8

8∑
i=1

Si. (10)

The effectiveness of other EU-related engineering activ-
ities can be evaluated in a similar way, so that the val-
ues for y1, y2, · · · , yn can be determined. Then, the state
of knowledge about the potential failures of the compo-
nent or system can be evaluated as the weighted average
of yi, i = 1, 2, · · · , n:

y =
n∑
i=1

ωiyi, (11)

where ωi is the relative importance of the ith engineering
activity for the characterization of the potential failure behav-
iors, where

∑n
i=1 ωi = 1.

2) DETERMINATION OF EUF
Having determined the value of y, we need to define a func-
tion σe = h(y), through which σe is determined. Since σe
is a measure of the severity of epistemic uncertainty and y
measures the state of knowledge, σe is negatively dependent
on y. Theoretically, any monotonic decreasing function of y
could serve as h(y). In practice, the form of h(y) reflects
the decision maker attitude towards epistemic uncertainty
and is related to the complexity of the product. Therefore,
we propose h(y) to be

h(y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
3
√
y

· md , for simple products;

1
3y6

· md , for complex products;

1
3y2

· md , for medium complex products.

(12)
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TABLE 2. Evaluation criteria for FMECA.

FIGURE 6. Different attitudes of the decision maker towards epistemic
uncertainty.

By letting σm = 0 and md fixed to a constant value,
the attitudes of the decision maker for different products can
be investigated (see Figure 6):

• for simple products, RB is a convex function of y, indi-
cating that even when y is small, we can gather enough
knowledge on the product function and failure behav-
iors, so that we can assign a high value to the belief
reliability;

• for complex products, RB is a concave function of y,
indicating that only when y is large we can gather suf-
ficient knowledge on the product function and failure

behaviors, so that we can assign a high value to the belief
reliability;

• the h(y) for medium complex products lies between the
two extremes.

IV. CASE STUDIES
In this section, we apply the developed belief reliabil-
ity to evaluate the reliability of two engineering com-
ponents/systems, i.e., a Hydraulic Servo Actuator (HSA)
in Section IV-A and a Single Board Computer (SBC)
in Section IV-B. A comparison is also made on both
cases with respect to the traditional probabilistic reliability
metrics.

A. HYDRAULIC SERVO ACTUATOR (HSA)
The HSA considered in this paper comprises the six compo-
nents, as listed in Table 3. The schematic of the HSA is given
in Figure 7.

The required function of the HSA is to transform
input electrical signals, xinput, into the displacement of the
hydraulic cylinder (HC). The performance parameter of the
HSA is the attenuation ratio measured in dB:

pHSA = −20 lg
AHC
Aobj

, (13)

where, AHC denotes the amplitude of the HC displacements
when input signal xinput is a sinusoidal signal, and Aobj is the
objective value of AHC. Failure occurs when pHSA ≥ pth =
3(dB). The belief reliability of theHSA is evaluated following
the procedures in Figure 5.
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TABLE 3. Components and tolerances of the HSA.

1) PERFORMANCE MARGIN MODEL DEVELOPMENT
The performance margin model is developed in two steps.
First, a model for the pHSA is developed based on hydraulic
principles, with the help of commercial software AMESim.
TheAMESimmodel is given in Figure 7. Coherentlywith (2),
the model in Figure 7 is written as

pHSA = gHSA(xHSA). (14)

FIGURE 7. Schematic of the AMESim model to predict pHSA.

Second, as pHSA is a STB performance parameter, the per-
formance margin of the HSA can be determined according
to (1):

mHSA = 1
pth

(pth − gHSA(xHSA)) . (15)

2) ALEATORY UNCERTAINTY EVALUATION
The xHSA comprises six parameters, namely, the clearances
on diameters (CoDs) of the six components of the HSA. The
CoDs are subject to aleatory uncertainties from production
and manufacturing processes, which are quantified by the
tolerances in Table 3. For simplicity of illustration, it is
assumed that all the six parameters follow normal distribu-
tions. Following the ’3σ ’ principle (for references, see [40]),
the probability density function for each parameter is deter-
mined and given in Table 3. The value of md is calculated
by (4), where the nominal values are given in Table 3. The
resulting md is 0.6928 (dB). The values of σm is determined
usingMonte Carlo simulations with a sample size N = 3000.
The resulting σm is 0.0353 (dB).

3) EPISTEMIC UNCERTAINTY EVALUATION
Then, we need to determine the value of σe. In the devel-
opment of the HSA, five EU-related engineering activities,
i.e., FMECA, FRACAS, RGT, RET and RST have been
conducted. Let yi, i = 1, 2, · · · , 5 denote the five engineering
activities, respectively. The values of yis can be determined by
evaluating the effectiveness of these engineering activities,
based on the procedures illustrated in Section III-B1. The
result is y1 = 0.70, y2 = 0.90, y3 = 0.80, y4 = 0.85,
y5 = 0.70. In this case study, the engineering activities
are assumed to have equal weights, ω1 = ω2 = · · · =
ω5 = 1/5, and then, according to (11), y = 0.79. Since the
HSA has medium complexity, according to (12),

σe = 1
3y2

· md = 0.3700. (16)

4) BELIEF RELIABILITY EVALUATION
Finally, the belief reliability can be predicted using (8) and
the result is shown in Table 4. If we only consider the
aleatory uncertainty, probabilistic reliability can be predicted
using (3), whose value is also presented in Table 4 for com-
parisons. The result shows that, as expected, epistemic uncer-
tainty reduces our confidence that the product will perform its
function as designed, whereas probabilistic reliability would
lead to overconfidence.

TABLE 4. Comparison between probabilistic reliability and belief
reliability.

Another major difference between belief reliability and
probabilistic reliability is that belief reliability allows for
the consideration of EU-related engineering activities in the
reliability assessment, which are neglected in the probability-
based reliability evaluation. For example, if the effectiveness
of the EU-related engineering activities is increased from
y1 = 0.70, y2 = 0.90, y3 = 0.80, y4 = 0.85, y5 = 0.70
to y1 = y2 = · · · = y5 = 0.9, then, the belief reliability
will increase from RB,0 = 0.9688 to RB,1 = 0.9921.
In other words, in order to enhance the belief reliability, one
not only needs to increase the design margin and reduce
aleatory uncertainty by design, but also needs to reduce
epistemic uncertainty by improving the state of knowledge,
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whereas probabilistic reliability focuses only on the former
two aspects.

B. SINGLE BOARD COMPUTER
A SBC, as shown in Figure 8 [41], is chosen to demonstrate
the time-dependent belief reliability analysis for electrical
systems.

FIGURE 8. A SBC [41].

TABLE 5. Predicted failure rates of the SBC [41].

A probabilistic reliability analysis was conducted in [41]
based on the parts-counting reliability prediction method
in [42]. The times to failure of both the components are
assumed to be exponentially distributed and their failure
rates are predicted based on the database in [42], as shown
in Table 5. The failure rate of the SBC can, then, be calculated
by summing over all the components’ failure rates. Hence,
the predicted probabilistic reliability is

Rp(t) = exp{−1.186 × 10−6t}, (17)

where the unit of t is hour.
The probabilistic reliability in (17) is a time-dependent

function. To further evaluate the belief reliability, first note
by substituting (5) into (8), we have

RB = 1√√√√(
1
ZRp

)2

+
(

σe

md

)2
. (18)

Since Rp is time-dependent, the belief reliability is also a
time-dependent function and can be calculated by using (18)

recursively at each time t:

RB(t) = 1√√√√(
1

ZRp(t)

)2

+
(

σe

md

)2
, (19)

whereRp(t) is the time-dependent probabilistic reliability and
σe is the EUF evaluated using the procedures in Section III-B.

The effectiveness of the five EU-related engineering activ-
ities, i.e., FMECA, FRACAS, RGT, RET and RST, can be
assessed using the procedures illustrated in Section III-B1:
y1 = 0.60, y2 = 0.80, y3 = 0.70, y4 = 0.75, y5 =
0.55. As the previous case study, we also assume that the
five activities have equal weights. From (11), y = 0.68.
By assessing the configuration of the SBC, it is determined
that it hasmedium complexity. Therefore, by substituting (12)
and (17) into (19), the belief reliability of the SBC can be
calculated, as shown in Figure 9.

FIGURE 9. Belief reliability of the SBC.

It can be seen from Figure 9 that the belief reliability curve
is more close to RB = 0.5 than the probabilistic reliability.
This is because RB = 0.5 corresponds to the state of max-
imum uncertainty, since we cannot differentiate whether the
system is more likely to be working or failure (for details,
please refer to maximum uncertainty principle in [37]). Since
belief reliability considers the influence of epistemic uncer-
tainty, it yields a more uncertain result than the probabilistic
reliability.

A sensitivity analysis is conducted with respect to y to
further investigate the influence of epistemic uncertainty on
belief reliability. The results are given in Figure 10. It can
be seen from Figure 10 that the value of y significantly
impactsRB: a larger value of y, which indicates improvements
on the effectiveness of the EU-related engineering activities,
tends to make the belief reliability moving towards the prob-
abilistic reliability; while a lower value of y tends to make
the belief reliability moving towards 0.5, which is the state of
maximum uncertainty. This demonstrates that, compared to
the traditional probabilistic reliability, belief reliability allows
for the explicit consideration of epistemic uncertainty and
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FIGURE 10. Belief reliability of the SBC.

EU-related engineering activities in the reliability assess-
ment. In other words, in order to enhance the belief reliability,
one not only needs to increase the design margin and reduce
aleatory uncertainty by design, but also needs to reduce epis-
temic uncertainty by improving the state of knowledge.

V. CONCLUSION
In this paper, a new metric of belief reliability has been
introduced to explicitly incorporate the influence of epis-
temic uncertainty into model-based methods of reliability
assessments. To quantify the effect of epistemic uncertainty,
an evaluation method is proposed, based on the effectiveness
of engineering activities related to reliability analysis and
assessment. The proposed belief reliability evaluationmethod
integrates design margin, aleatory uncertainty and epistemic
uncertainty for a comprehensive and systematic characteri-
zation of reliability. Two numerical case studies demonstrate
the benefits of belief reliability compared to the traditional
probability-based reliability metrics, with the explicit consid-
eration of epistemic uncertainty.

Compared to the traditional probabilistic reliability
metrics, belief reliability explicitly considers the effect of
epistemic uncertainty and allows considering EU-related
engineering activities in reliability assessment. We believe
that as a new reliability metric, belief reliability is beneficial
in reliability engineering practices, since epistemic uncer-
tainty is a severe problem for real-world products, especially
for those in design and development phases. An interesting
future work is to define a mathematical theory to model
belief reliability and its time-dependence. Various mathe-
matical theories dealing with epistemic uncertainty can be
considered, e.g., Bayesian theory, evidence theory, possibility
theory, uncertainty theory, etc. Besides, methods of scoring
the effectiveness of engineering activities should be further
investigated.
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The optimization of spare parts inventory for equipment system is becoming a dominant support strategy,

especially in the defense industry. Tremendous researches have been made to achieve optimal support

performance of the supply system. However, the lack of statistical data brings limitations to these opti-

mization models which are based on probability theory. In this paper, personal belief degree is adopted

to compensate the data deficiency, and the uncertainty theory is employed to characterize uncertainty

arising from subjective personal cognition. A base-depot support system is taken into consideration in the

presence of uncertainty, supplying repairable spare parts for equipment system. With some constraints

such as costs and supply availability, the minimal expected backorder model and the minimal backorder

rate model will be presented based on uncertain measure. Genetic algorithm is adopted in this paper to

search for optimal solution. Finally, a numerical example is employed to illustrate the feasibility of the

optimization models.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Inventory management has always been a major issue since

last century. Some factors, such as the huge technological leap, the

complexity of product systems, the expansion of outsourcing and

supply networks, have made the system performance increasingly

dependent on supply capacity and jointly promoted the complicacy

of inventory management (Wagner and Neshat [29]).

Different from the general inventory management applied in

civil use, inventory system of military equipment has its own char-

acteristics: Spare parts inventory system supplies replacements for

equipment system made of tens of thousands of items. Thus the

strategy for inventory management depends heavily on the perfor-

mance and maintenance of the system. What is more important,

backorder in a military equipment system will bring sequential

immeasurable damages which are more than those brought by the

falling infinite economic loss. Focused on spare parts order strat-

egy, inventory theory becomes more vital for a military equipment

system to solve the issue about how to set and maintain a moder-

ate stock level to strike a balance between the loss of downtime

∗ Corresponding author at: Science and Technology on Reliability and Environ-

mental Engineering Laboratory, Beijing 100191, China.

E-mail addresses: wenmeilin@buaa.edu.cn (M. Wen), hanqiao@buaa.edu.cn

(Q. Han), zzpcissy2006@163.com (Y. Yang), kangrui@buaa.edu.cn (R. Kang).

caused by under stock and the holding cost for excessive stock

[28].

The development of inventory management has witnessed the

substantial evolutionary process fulfilled with endeavors of enor-

mous experts and scholars. In 1913, Harris [8] first studied the

optimal economical solution to inventory problem and proposed

the EOQ model, which has laid the foundation for later deter-

ministic inventory models. Then exponential smoothing based on

historical data was proposed by Syntetos et al. [26] to forecast con-

secutive demand. With this method, the demand of next period

was obtained by smoothing the contemporary demand, consider-

ing that later data is more influential on future demand. Bootstrap

method [5], which sampled the historical data to produce virtual

data for demand forecasting, had a wide application.

However, the instability and supply uncertainty of inventory

system have increased, which makes it more complicated for ratio-

nal allocation of spare parts and appeals to many experts for

exploration. Large numbers of researches have been conducted

according to the probability theory, operational research and math-

ematical statistics in stochastic case. Sherbrooke [23] proposed

METRIC model to study the multi-echelon inventory system. After

that, Grave [7] improved the METRIC by assuming the transporta-

tion time was a fixed value, and proposed an approximate solving

model. In order to solve the problem of lateral supply, Sherbrooke

[24] further proposed VARI-METRIC model and developed an

http://dx.doi.org/10.1016/j.asoc.2016.07.057

1568-4946/© 2016 Elsevier B.V. All rights reserved.
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emulation program. Caglar [3] adopted Heuristic algorithm to min-

imize system cost subjected to the demand respond constraint.

However, the lack of statistical data brings limitations to these

optimization models based on probability theory, which are no

longer available. To the best of our knowledge, all those existing

methods for inventory forecasting and optimization require mas-

sive historical data to build a rational estimation or to satisfy the

hypothesis of probability theory. However, it seems unpractical

to obtain the statistical information especially for military equip-

ment system due to some constraints, such as technology, time,

cost and so on. Therefore, a novel approach to uncertain demand

optimization needs to be proposed as barely enough historical data

of demand exists.

In 1981, Sommer [25] applied the fuzzy set theory (Zadeh

[31]) to inventory optimization with fuzzy dynamic programming

method, and thus gradually enriched a new branch of inven-

tory management. However, it was found that once the demand

increases from downstream to a high-level depot, the variance of

order will be amplified (Ancarani et al. [2]). On one hand, compli-

cacy of inventory management becomes a predominant influence

on supply uncertainty; on the other hand, because of the limited

cognitions, it is known that human beings always tend to exagger-

ate or misrepresent the probabilistic information (Kahneman and

Tversky [10]).

Under this circumstance, the uncertainty theory was proposed

by Liu [16] in 2007 and refined by Liu [15] in 2010 to treat human’s

belief degree mathematically. Based on normality, duality, subad-

ditivity and product measure axioms, this novel theory has been

widely applied in various fields, such as risk analysis (Liu [14]),

portfolio selection (Li et al. [20]), facility location-allocation prob-

lem (Wen and Iwamura [30]), reliability analysis (Zeng and Wen

[32]) and travel itinerary problem (Li et al. [30]). The uncertainty

theory is employed in this paper to deal with multi-echelon spare

parts supply system.

The rest of this paper will be organized as follows: Firstly, uncer-

tainty theory will be introduced in Section 2 including uncertain

variable, uncertainty distribution, and uncertain expected value;

Then Section 3 will give a description of the spare part supply sys-

tem with several rational assumptions and Section 4 will give a list

to all notations; The minimal expected backorder model and min-

imal backorder rate model will be built in Section 5, and Section

6 will employ genetic algorithm to solve these two optimization

models; Finally, a numerical example will be given to illustrate the

availability and effectiveness of these models.

2. Preliminaries

The concept of uncertain measure was firstly proposed in uncer-

tainty theory by Liu [16] to describe the belief degree of decision

makers, which presents the likelihood that an uncertain event hap-

pens. Then a concept of uncertain variable was given to model the

quantity in uncertain condition, as well as uncertainty distribution,

expected value and variance. The interested reader may consult Liu

[17].

Let � be a nonempty set, and Ł be an �-algebra over �. Define

each element� ∈ Ł as an event. Liu gave us normality axiom, dual-

ity axiom, subadditivity axiom and product axiom in order to assign

a number M
{

�
}

∈ [0, 1] to each event:

Axiom 1. (Liu [16]) M
{

�
}

= 1 for the universal set �. (1)

Axiom 2. (Liu [16]) M
{

�
}

+ M
{

�c
}

= 1 for any event �. (2)

Axiom 3. (Liu [16]) For every countable sequence of events

�1, �2, · · ·, we have

M

{ ∞∪
i=1

�i

}
≤

∞∑
i=1

M
{

�i

}
. (3)

Axiom 4. (Liu [16]) Let (�k, Łk, Mk) be uncertainty spaces for

k = 1, 2, · · ·. Then the product uncertain measure M is an uncertain

measure satisfying

M

{ ∞∏
k=1

�k

}
=

∞
�

k=1

Mk

{
�k

}
(4)

where �k are arbitrarily chosen events from Łk for k = 1, 2, · · ·,
respectively.

Definition 1. (Liu [16]) An uncertain variable � is a measur-

able function from an uncertainty space (�, Ł, M) to the set of real

numbers, i.e., for any Borel set B of real numbers, the set{
� ∈ B

}
=
{

� ∈ �|� (�) ∈ B
}

(5)

is an event.

Definition 2. (Liu [16]) The uncertain variables �1, �2, · · ·, �n are

said to be independent if

M

{
n∩

i=1

(
�i ∈ Bi

)}
= �n

i=1
M
{

�i ∈ Bi

}
(6)

for any Borel sets B1, B2, · · ·, Bn.

In order to describe an uncertain variable, a concept of uncer-

tainty distribution is defined as follows.

Definition 3. (Liu [16]) The uncertainty distribution � of an

uncertain variable � is

� (x) = M
{

� ≤ x
}

(7)

for any real number x.

Example 1. An uncertain variable � is called discrete if it takes

the values in {x1, x2, · · ·, xn} and has an uncertain distribution

� (x) =

⎧⎪⎨
⎪⎩

˛0, if x < x1

˛i, if xi ≤ x < xi+1, 1 ≤ i < n

˛n, if x ≥ xn

(8)

denoted by D (x1, ˛1, x2, ˛2, · · ·, xn, ˛n) where x1 < x2 < · · · <
xn and 0 = ˛0 ≤ ˛1 ≤ ˛2 ≤ · · · ≤ ˛n = 1.

Definition 4. (Liu [16]) An uncertainty distribution � (x) is said

to be regular if it is a continuous and strictly increasing function

with respect to x at which 0 < � (x) < 1, and

lim
x→−∞

� (x) = 0, lim
x→+∞

� (x) = 1.

Then its inverse function �−1 (˛) exists and is unique for each

˛ ∈ (0, 1). In this case, the inverse function �−1 (˛) is called the

inverse uncertainty distribution of �.

Example 2. (Liu [16]) An uncertain variable � is called zigzag if

it takes a zigzag uncertainty distribution

� (x) =

⎧⎪⎪⎨
⎪⎪⎩

0, if x ≤ a

(x − a) /2 (b − a) , if a ≤ x ≤ b

(x + c − 2b) /2 (c − b) , if b ≤ x ≤ c

1, if x ≥ c

(9)

denoted by Z (a, b, c) where a, b, c are real numbers with a <
b < c.

Obviously, a zigzag uncertainty distribution is continuous and

strictly increasing, and it is regular.
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Theorem 1. (Liu [12]) Let �1, �2, · · ·, �n be independent uncertain

variables with regular uncertainty distributions �1, �2, · · ·, �n,

respectively. If f is a strictly increasing function, then

� = f
(

�1, �2, · · ·, �n

)
is an uncertain variable with inverse uncertainty distribution

�−1 (˛) = f
(

�−1
1 (˛) , �−1

2 (˛) , · · ·, �−1
n (˛)

)
. (10)

Example 3. Let �1, �2, · · ·, �n be independent uncertain variables

with regular uncertainty distributions �1, �2, · · ·, �n, respec-

tively. Then

� = �1 + �2 + · · · + �n

is an uncertain variable with inverse uncertainty distribution

�−1 (˛) = �−1
1 (˛) + �−1

2 (˛) + · · · + �−1
n (˛) . (11)

Definition 5. (Liu & Ha [18]) The expected value of an uncertain

variable � is defined by

E
[
�
]

=
+∞∫

0

M
{

� ≥ x
}

dx −
0∫

−∞

M
{

� ≤ x
}

dx (12)

provided that at least one of the two integrals is finite.

Theorem 2. Let � be an uncertain variable with an uncertainty

distribution �. If E
[
�
]

exists, then

E
[
�
]

=
+∞∫

0

(1 − � (x)) dx −
0∫

−∞

� (x) dx. (13)

Example 4. Let �∼D (x1, ˛1, x2, ˛2, · · ·, xn, ˛n) be a discrete

uncertain variable. Then

E
[
�
]

=
n∑

i=1

(˛i − ˛i−1) xi (14)

where x1 < x2 < · · · < xn and 0 = ˛0 ≤ ˛1 ≤ ˛2 ≤ · · · ≤ ˛n = 1.

Example 5. Let �∼Z (a, b, c) be a zigzag uncertain variable. Then

it has an expected value

E
[
�
]

= a + 2b + c

4
. (15)

Theorem 3. (Liu and Ha [18]) Assume that �1, �2, · · ·, �n are

independent uncertain variables with regular uncertainty distri-

butions �1, �2, · · ·, �n, respectively. If f (x1, x2, · · ·, xn) is strictly

increasing with respect to x1, x2, · · ·, xm and strictly decreasing

with respect to xm+1, xm+2, · · ·, xn, then the uncertain variable � =
f
(

�1, �2, · · ·, �n

)
has an expected value

E
[

�
]

=

1∫
0

f
(

�−1
1

(˛) , · · ·, �−1
m (˛) , �−1

m+1
(1 − ˛) , · · ·, �−1

n (1 − ˛)
)

d˛. (16)

3. Problem description

3.1. Supply process description

Spare parts inventory is served as a supply system to assist

maintenance replacement to keep equipment under operating con-

dition. When failure occurs, the fault component will be replaced

with spare part, so that the stock level of spare parts becomes an

important factor of significant influence. Therefore, it is a vital tar-

get to keep balance between costs for spare parts and readiness

capability of equipment system, so as to make the supply adjustable

to the lowest level of item cost.

α2

Φ

α1

α3

αn

1

0 x
2 3 n

…

…

Fig. 1. Discrete Uncertainty Distribution.

Fig. 2. Zigzag Uncertainty Distribution.

(x)

0 x

1

Fig. 3. Zigzag Uncertainty Distribution.

A multi-echelon support system consists of three echelons,

namely, organizational level, intermediate level and depot level.

Each base at these echelons owns an appropriate inventory depot.

Support recourse flows both ways, that is, fault component gen-

erated by organizational level is replaced and repaired at this

base if possible, or sent to higher level for maintenance when

organizational-level maintenance is not available. At the same time,

demands for spares generated from lower level are met with spares

provided by higher level. The repaired spare part is stored in cor-

responding inventory depot to the maintenance agency where it is

repaired (Figs. 1–4).

Taking a simplified base-depot support system made of one

depot and J organizational-level bases for example, it could sup-

plies I items for a complex equipment system. (s − 1, s) ordering

policy is adopted in this paper. An order request will be sent out

from the base when stock level decreases1 item, so as to restore

to the original level. Since repairable items hold the characteris-

tics of complex mechanism, high cost and low possibility for fault

during the period, the assumption for (s − 1, s) ordering policy is

appropriate.

Usually support performance is evaluated by efficiency indexes,

such as operational availability, expected backorder and so on.

Since operational availability can be expressed by the function of

expected backorder which is easier to be calculated, expected back-

order is chosen as support efficiency index. As another important

index, cost spent on support resource mainly involves ordering cost,

holding cost and shortage cost caused by out-of-stock downtime.
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Fig. 4. Genetic Algorithm Procedure.

3.2. Assumption

To concentrate on repairable spare part inventory optimiza-

tion model itself, several reasonable assumptions are proposed and

shown as follows:

1) Demands for each item at each base are independent;

2) Decision on where to repair a fault item depends only on mainte-

nance capacity of bases and maintenance level of the item itself,

while stock levels and repair workload are ignored;

3) All items are identically important and as good as new after

maintenance;

4) Faults of different units occur without interaction;

5) All units in a stand-alone system are series and any failure can

cause a shutdown of the system;

6) Maintenance cost and transit cost are ignored;

7) Maintenance can always be achieved either at base j or at depot;

8) Supplies between bases are forbidden.

3.3. Notations

i: Index of item, i = 1, 2, · · ·, I;
j: Index of base, j = 0, 1, 2, · · ·, J. It represents a depot when j =

0;

xij: Stock level of item i at base j, i = 1, 2, · · ·, I, j = 0, 1, 2, · · ·, J;
�ij: Uncertain demands for item i at base j in a time period [0, T],

i = 1, 2, · · ·, I, j = 1, 2, · · ·, J;
�ij: Uncertainty distribution of �ij , i = 1, 2, · · ·, I, j =

0, 1, 2, · · ·, J;
˛: Upper limit of supply availability of the overall supply system;

C̄: Superior limit of overall cost in spare supply process;

B̄o: Upper limit of backorders of all items at depot;

C:Total cost in spare supply process;

Co:Total ordering cost;

CH: Total holding cost;

CS: Total shortage cost;

co
ij
: Ordering cost per unit of item i at base j,i = 1, 2, · · ·, I, j =

0, 1, 2, · · ·, J;

cH
ij

: Holding cost per unit of item i at base j, i = 1, 2, · · ·, I, j =
0, 1, 2, · · ·, J;

cS
ij
: Shortage cost per unit of item i at base j, i = 1, 2, · · ·, I, j =

1, 2, · · ·, J;
	ij: Demand rate for spares i at base j, i = 1, 2, · · ·, I, j =

1, 2, · · ·, J;
A: Supply availability of all fleets supported by the overall supply

system;

Aj: Supply availability of a single flight supported by base j, j =
1, 2, · · ·, J;

Nj: Number of equipment at base j, j = 1, 2, · · ·, J;
Zij: Number of units installed in a single equipment, i =

1, 2, · · ·, I, j = 0, 1, 2, · · ·, J;
Mj: Expected backorder rate of item i at base j, i = 1, 2, · · ·, I, j =

0, 1, 2, · · ·, J;
r̄j: Superior limit of backorder rate at base j, j = 1, 2, · · ·, J;
r̄0: Superior limit of backorder rate at the depot;

Vi: Volume per unit of item i;
v̄j: Superior limit of volume of all items at base j, j = 0, 1, 2, · · ·, J;
Wi: Weight per unit of item i;
w̄j: Superior limit of weight of all items at base j, j = 0, 1, 2, · · ·, J.

4. Minimal expected backorder model

The spare parts inventory optimization is to search for the ratio-

nal stock levels of spare parts with the objective functions such as

cost and supply fulfilled rate satisfied. Since sample data about the

stock levels of spare parts often absent, no other way can be adopted

but to invite the domain experts to obtain their belief degree about

uncertain demands. Therefore, the belief degree about the demands

for spare parts at each base is regarded as an uncertainty distri-

bution in the framework of uncertainty theory, and formulates a

minimal expected backorder model.

4.1. Objective function

As analyzed above, expected backorder is regarded as our objec-

tive function. A spare part backorder will be sent out when the

quantity of demands exceeds the stock levels of spares. The short-

age can be supplied with a spare from warehouse or an ordered one

from higher depot. Therefore, expected backorder is indicated with

different expected value between demands and stock level. What

should be noted is that backorder at depot is ignored during the

calculation, because it refers to backorder at every base that influ-

ences the availability of equipment system rather than the one at

depot. The objective function can be expressed as

F (x) = min

J∑
j=1

I∑
i=1

[(
E
[
�ij

]
− xij

)
∨ 0
]

(17)

where �ij is uncertain variable and xij is decision variable.

4.2. Constraint 1

Cost C is regarded as a major constraint on optimization objec-

tive including ordering cost Co holding cost CH and shortage cost

CS .

It could be easily concluded that C = Co + CH + CS . The ordering

cost can be easily expressed as

Co =
J∑

j=0

I∑
i=1

co
ijxij. (18)
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Due to gradually declining stock level, the holding cost can be

derived by line integral and presented as

CH =
J∑

j=0

I∑
i=1

(
xijc

H
ij T − 0.5	ijc

H
ij T2
)

, (19)

where 	ij is defined as demand rate for spares i at base j, namely

the average demand in every year. Thus there exists the fact that

	ij = �ij/T , in which j = 1, 2, · · ·, J. Notice that demand rate for item

i at depot 	i0 is a function of the backorders generated by bases.

The above expression can be transformed into

CH =
J∑

j=1

I∑
i=1

(
xijc

H
ij T − 0.5�ijc

H
ij T
)

+
I∑

i=1

⎛
⎝xi0cH

i0T − 0.5

⎧⎨
⎩

J∑
j=1

[(
�ij − xij

)
∨ 0
]⎫⎬⎭ cH

i0T

⎞
⎠ . (20)

Since the holding cost CH includes uncertain variables which

cannot be compared directly, we can use their expected values

instead:

E
[
CH
]

=
J∑

j=1

I∑
i=1

(
xijc

H
ij T − 0.5E

[
�ij

]
cH

ij T
)

+
I∑

i=1

⎛
⎝xi0cH

i0T − 0.5

⎧⎨
⎩

J∑
j=1

[(
E
[
�ij

]
− xij

)
∨ 0
]⎫⎬⎭ cH

i0T

⎞
⎠ .

Since shortage cost caused by out-of-stock downtime can bring

extensive damages especially during wartime, it is assumed that it

grows at an exponential rate with expected backorders. Thus the

following formula can be easily obtained:

CS =
J∑

j=1

I∑
i=1

cŜ
ij

(
E
[
�ij

]
− xij

)
(21)

In the formula, co
ij
, cH

ij
, cS

ij
, T are already known.

4.3. Constraint 2

Another index employed as constraint is supply availability. To

reflect the support performance of supply system, the supply avail-

ability is adopted in this paper, which directly reflects the support

performance in the supply chains. It indicates the expected value

of the percentage of equipment which cease to work caused not by

spare shortage. The supply availability of a single flight supported

by base can be characterized as

Aj =
I∏

i=1

[
1 −
(

E
[
�ij

]
− xij

)
/
(

NjZij

)]Zij . (22)

4.4. Constraint 3

As is shown before, backorders at depot are ignored while calcu-

lating the backorders of the supply performance of the overall spare

support system. However, the backorders at depot influence the

supply system a lot; it must be taken into consideration in uncer-

tain optimization model, so we take the backorders of depot as

another constraint, which can be expressed as

I∑
i=1

⎧⎨
⎩

J∑
j=1

[(
E
[
�ij

]
− xij

)
∨ 0
]

− xi0

⎫⎬
⎭ ≤ B̄o. (23)

4.5. Constraint 4

The last inequality is added for weight, volume and other exter-

nal constraints from external environment. Note that stock levels

for all items are positive integers.

Therefore, minimal expected backorder model can be expressed

as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

J∑
j=1

I∑
i=1

[(
E
[
�ij

]
− xij

)
∨ 0
]

s.t.
J∑

j=0

I∑
i=1

(
co

ij
+ cH

ij
T
)

xij +
J∑

j=1

I∑
i=1

{
cS

ij
(E[�ij]−xij)

−0.5T
{

cH
ij

E
[
�ij

]
+ cH

i0

[(
E
[
�ij

]
− xij

)
∨ 0
]}}

≤ C̄

J∑
j=1

{
I∏

i=1

[
1 −
(

E
[
�ij

]
− xij

)
/
(

NjZij

)]Zij

}
Nj/

⎛
⎝ J∑

j=1

Nj

⎞
⎠ ≥ ˛

I∑
i=1

⎧⎨
⎩

J∑
j=1

[(
E
[
�ij

]
− xij

)
∨ 0
]

− xi0

⎫⎬
⎭ ≤ B̄o

xij ∈ N, i = 1, 2, · · ·, I, j = 0, 1, 2, · · ·, J

gk (x) ≤ 0, k = 1, 2, · · ·, p.

(24)

5. Minimal backorder rate model

Backorder rate is another efficient index to evaluate the per-

formance of support system. Charnes and Cooper [4] proposed the

chance-constrained programming, which can be utilized to handle

the problem with a given confidence level subjected to the chance

constraints. The second model based on the chance-constrained

programming model is established to minimize the backorder rate.

5.1. Objective function

In this model, uncertainty measure is employed to indicate the

possibilities that the shortage of spare parts cannot be supplied

with stock level xij of item i as soon as the fault occurs. Since perfor-

mance of the whole support system is more important than one of

a single base, backorder rate is calculated with considering uncer-

tain measures that backorder of any item generates at all bases.

Thus the objective function can be expressed as

G (x) = min
x

J∑
j=1

I∑
i=1

M
{

�ij ≥ xij

}
(25)

In the formula, M
{

�ij ≥ xij

}
is an uncertain measure.

5.2. Constraint functions

Despite the fact that only backorders generated from bases

directly affect the performance of equipment system, it is necessary

to restrain the backorder rate of items at one base or depot. When
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considering the backorder rate at base j, formula can be obtained

as follows:

I∑
i=1

M
{

�ij ≥ xij

}
≤ r̄j, j = 1, 2, · · ·, J. (26)

It can be easily found that the cost constraint and the supply

availability constraint are similar with those presented in the first

model; other factors needed to be considered are listed with the

last inequality constraints.

Above all, the following minimal backorder rate model can be

obtained:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

J∑
j=1

I∑
i=1

M
{

�ij ≥ xij

}
s.t.

J∑
j=0

I∑
i=1

(
co

ij
+ cH

ij
T
)

xij +
J∑

j=1

I∑
i=1

{
cS

ij
(E[�ij]−xij)

−0.5T
{

cH
ij

E
[
�ij

]
+ cH

i0

[(
E
[
�ij

]
− xij

)
∨ 0
]}}

≤ C̄

J∑
j=1

{
I∏

i=1

[
1 −
(

E
[
�ij

]
− xij

)
/
(

NjZij

)]Zij

}
Nj/

⎛
⎝ J∑

j=1

Nj

⎞
⎠ ≥ ˛

I∑
i=1

M
{

�ij ≥ xij

}
≤ r̄j, j = 1, 2, · · ·, J

I∑
i=1

⎧⎨
⎩

J∑
j=1

[(
E
[
�ij

]
− xij

)
∨ 0
]

− xi0

⎫⎬
⎭ ≤ B̄o

xij ∈ N, i = 1, 2, · · ·, I, j = 0, 1, 2, · · ·, J

gk (x) ≤ 0, k = 1, 2, · · ·, p.

(27)

It can be easily proved that the model is equivalent to the fol-

lowing one:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

J∑
j=1

I∑
i=1

(
1 − �

(
xij

))
s.t.

J∑
j=0

I∑
i=1

(
co

ij
+ cH

ij
T
)

xij +
J∑

j=1

I∑
i=1

{
cS

ij
(E[�ij]−xij)

−0.5T
{

cH
ij

E
[
�ij

]
+ cH

i0

[(
E
[
�ij

]
− xij

)
∨ 0
]}}

≤ C̄

J∑
j=1

{
I∏

i=1

[
1 −
(

E
[
�ij

]
− xij

)
/
(

NjZij

)]Zij

}
Nj/

⎛
⎝ J∑

j=1

Nj

⎞
⎠ ≥ ˛

I∑
i=1

(
1 − �

(
xij

))
≤ r̄j, j = 1, 2, · · ·, J

I∑
i=1

⎧⎨
⎩

J∑
j=1

[(
E
[
�ij

]
− xij

)
∨ 0
]

− xi0

⎫⎬
⎭ ≤ B̄o

xij ∈ N, i = 1, 2, · · ·, I, j = 0, 1, 2, · · ·, J

gk (x) ≤ 0, k = 1, 2, · · ·, p.

(28)

6. A Special case

As we discussed in Section 2, if c1, c2, · · ·, cQ are nonnegative

numbers and c1 + c2 + · · · + cQ = 1, the expected uncertain variable

can be calculated with the formula as follows:

E
[
�ij

]
=

Q∑
q=1

cqij�qij. (29)

Expected value operator of uncertain variable and uncertain

expected value model was proposed by Liu [16] in 2007. Li [19]

has given some researches to expected values of strictly monotone

functions, and we will also give its equivalent model which can be

obtained as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

J∑
j=1

I∑
i=1

[(
Q∑

q=1

cqij�qij − xij

)
∨ 0

]
s.t.

J∑
j=0

I∑
i=1

(
co

ij
+ cH

ij
T
)

xij

+
J∑

j=1

I∑
i=1

{
cŜ

ij

(
Q∑

q=1

cqij�qij − xij

)

−0.5T

{
cH

ij

Q∑
q=1

cqij�qij + cH
i0

[(
Q∑

q=1

cqij�qij − xij

)
∨ 0

]}}
≤ C̄

J∑
j=1

{
I∏

i=1

[
1 −

(
Q∑

q=1

cqij�qij − xij

)
/
(

NjZij

)]Zij
}

Nj/

(
J∑

j=1

Nj

)
≥ ˛

I∑
i=1

{
J∑

j=1

[(
Q∑

q=1

cqij�qij − xij

)
∨ 0

]
− xi0

}
≤ B̄o

xij ∈ N, i = 1, 2, · · ·, I, j = 0, 1, 2, · · ·, J

gk (x) ≤ 0, k = 1, 2, · · ·, p.

(30)

The conclusion from Section 2 can be got if c1, c2, · · ·, cQ are non-

negative numbers, and if c1 + c2 + · · · + cQ = 1, then

�
(

xij

)
=
∑

�qij≤xij

cqij . (31)

Based on chance constraint programming model proposed by

Liu [13], the following formula can be obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

J∑
j=1

I∑
i=1

⎛
⎝1 −

∑
�qij≤xij

cqij

⎞
⎠

s.t.
J∑

j=0

I∑
i=1

(
co

ij
+ cH

ij
T
)

xij

+
J∑

j=1

I∑
i=1

{
cŜ

ij

(
Q∑

q=1

cqij�qij − xij

)

−0.5T

{
cH

ij

Q∑
q=1

cqij�qij + cH
i0

[(
Q∑

q=1

cqij�qij − xij

)
∨ 0

]}}
≤ C̄

J∑
j=1

{
I∏

i=1

[
1 −

(
Q∑

q=1

cqij�qij − xij

)
/
(

NjZij

)]Zij
}

Nj/

(
J∑

j=1

Nj

)
≥ ˛

I∑
i=1

⎛
⎝1 −

∑
�qij≤xij

cqij

⎞
⎠ ≤ r̄j, j = 1, 2, · · ·, J

I∑
i=1

{
J∑

j=1

[(
Q∑

q=1

cqij�qij − xij

)
∨ 0

]
− xi0

}
≤ B̄o

xij ∈ N, i = 1, 2, · · ·, I, j = 0, 1, 2, · · ·, J

gk (x) ≤ 0, k = 1, 2, · · ·, p.

(32)
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7. Genetic algorithm

In the previous researches, spare parts inventory optimiza-

tion models were solved through integer programming, dynamic

programming and many other heuristic algorithms. However, the

minimal expected backorder model and minimal backorder rate

model are nonlinear discrete programming models. The genetic

algorithm is a search heuristic that efficiently solves nonlinear

problems and discrete problems. The advantage of this algorithm

lies in global optimization and it can flexibly adjust its search direc-

tion without determined rules, so that the genetic algorithm is

employed to solve these two models. The procedure of searching

optimal stock levels of spare parts is implemented by the repre-

sentation of initial population, fitness evaluation, genetic operation

(selection, crossover and mutation). This process can be described

as follows.

7.1. Problem representation

A chromosome Vp is defined as an integer vector of stock levels

of spare parts for all items at bases and depot to represent a solution

x. Thus the p − th chromosome can be expressed as

Vp =
(

xp10, xp11, · · ·, xp1J , · · ·, xpI0, xpI1, · · ·, xpIJ

)
.

The chromosome of initial population can be generated through

a random seed approach, N for the upper limit of stock levels

of spare parts, until pop size chromosomes are generated, p =
1, 2, · · ·, pop size.

7.2. Fitness calculation

Calculate the objective value Bp for each chromosome Vp, and

then the fitness value eval. The rank-based evaluation function is

defined as

Eval
(

Vp

)
= ˛(1 − ˛)p−1, p = 1, 2, · · ·, pop size,

where V1, V2, · · ·, Vpop size are assumed to have been rearranged

from good to bad according to their objective values Bp and ˛ ∈
(0, 1) is a parameter in the genetic system.

7.3. Crossover operation

Rearrange chromosomes of each population according to their

fitness from big to small, and the first chromosome pass on directly

to the next generation. Other chromosomes are selected from gen-

eration based on spinning roulette wheel characterized by fitness

for pop size times. Each time we select a single chromosome.

Then define a parameter Pc as the probability of crossover.

Generate a random number 
 from the interval [0, 1], and the

chromosome Vp is selected if 
 < Pc . Define selected parents as

x
′
1
, x

′
2
, · · ·. The children of x

′
1

and x
′
2

are

x1
′′ =
(

x(1)
110

× w + x(2)
110

× (1 − w) , x(1)
111

× w + x(2)
111

× (1 − w) , · · ·,

x(1)
1IJ × w + x(2)

1IJ × (1 − w)

)

and

x2
′′ =
(

x(2)
210

× w + x(1)
210

× (1 − w) , x(2)
211

× w + x(1)
211

× (1 − w) , · · ·,

x(2)
2IJ × w + x(1)

2IJ × (1 − w)

)
.

Check the feasibility for each child before accepting it. If both

children are feasible, then we replace the parents with the chil-

dren. If not, we keep the existing feasible ones, and then redo the

Table 1
Parameters of All Items at All Bases and Depot.

Vi Wi Unit Cost ci($M/unit) Nj Zij

co
ij

cH
ij

cS
ij

Base1 Item1 1 1 1 0.2 3̂
(

E
[

�11

]
− x11

)
12 6

Base1 Item2 0.8 0.6 1.5 0.3 3̂
(

E
[

�21

]
− x21

)
4

Base2 Item1 1 1 1 0.2 3̂
(

E
[

�12

]
− x12

)
10 6

Base2 Item2 0.8 0.6 1.5 0.3 3̂
(

E
[

�22

]
− x22

)
4

Depot Item1 1 1 1 0.15

Depot Item2 0.8 0.6 1.5 0.2

Table 2
Parameters Constraints of All Items at All Bases and Depot.

T ˛ C̄ B̄o r̄j v̄j w̄j

Base1 0.1 700 0.25 1 1

Base2 0.25 0.8 0.6

Depot 5 1 1

crossover operator until two feasible children are obtained or a

number of cycles are finished.

7.4. Mutation operation

Define a parameter Pm as the probability of mutation. Generate

a random number � from the interval [0, 1], and the chromosome

Vp is selected if � < Pm. Define U as an appropriate large positive

number. The child of x1 is

x1
′ =
(

x110 + d110 × u, x111 + d111 × u, · · ·, x1IJ + d1IJ × u
)

,

in which dkij ∈ [−1, 1], u ∈ [0, U]. If x
′

is not feasible, then set

W as a random number between 0 and U until it is feasible.

7.5. Algorithm description

Step 1. From the potential region initialize pop size chro-

mosomes Vp =
(

xp10, xp11, · · ·, xp1J , · · ·, xpI0, xpI1, · · ·, xpIJ

)
, which

denote stock levels of spare parts for all items at bases and depot.

Step 2. Calculate the objective values U for all chromosomes Bp,

p = 1, 2, · · ·, pop size.

Step 3. Compute the fitness of all chromosomes Bp, p =
1, 2, · · ·, pop size.

Step 4. Select the chromosomes for a new population.

Step 5. Renew the chromosomes Bp, p = 1, 2, · · ·, pop size
through crossover operation.

Step 6. Update the chromosomes Bp, p = 1, 2, · · ·, pop size
through mutation operation.

Step 7. Repeat the second to the sixth steps for a given number

of cycles.

Step 8. Report the best chromosome V∗ = x∗ as the optimal stock

levels of all items supplied by support system.

8. Numerical example

Consider a spare part supply system consisting of 1 depot and

2 bases: each base supplies 2 items A and B for an air fleet, while

the depot supplies items A and B for these two bases. Uncertain

demand distribution functions for the two parts are figured out

according to the belief degree from ten experts. In this paper, the

constraints of volume and weight of the spare parts at each base

and depot will be fully taken into consideration. The costs consist

of three parts including ordering cost, holding cost and shortage

cost. Initial support time period is 0.1 year. Parameters of items at

all bases and depot in details are given in Tables 1 and 2.
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Then uncertain spare part optimization models introduced in

Section 4 and Section 5 can be adopted to give the optimal stock

level allocation with xij for item i at base j. Supposing that all the

demands are discrete uncertainty variables introduced in Example

1, initial uncertain distributions of demands for each item at each

base are given as follows:

�
(

�11

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if�11 < 62

0.1, if 62 ≤ �11 < 66

0.2, if 66 ≤ �11 < 68

0.5, if 68 ≤ �11 < 72

0.7, if 72 ≤ �11 < 77

0.9, if 77 ≤ �11,

�
(

�12

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if�12 < 60

0.1, if 60 ≤ �12 < 63

0.2, if 63 ≤ �12 < 66

0.5, if 66 ≤ �12 < 71

0.7, if 71 ≤ �12 < 76

0.9, if 76 ≤ �12,

�
(

�21

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if�21 < 40

0.1, if 40 ≤ �21 < 42

0.2, if 42 ≤ �21 < 45

0.5, if 45 ≤ �21 < 47

0.7, if 47 ≤ �21 < 54

0.9, if 54 ≤ �21,

�
(

�22

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if�22 < 38

0.1, if 38 ≤ �22 < 40

0.2, if 40 ≤ �22 < 43

0.5, if 43 ≤ �22 < 46

0.7, if 46 ≤ �22 < 53

0.9, if 53 ≤ �22.

After that, the minimal expected backorder model can be

obtained as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

J∑
j=1

I∑
i=1

[(
Q∑

q=1

cqij�qij − xij

)
∨ 0

]
s.t.

J∑
j=0

I∑
i=1

(
co

ij
+ cH

ij
T
)

xij

+
J∑

j=1

I∑
i=1

{
cŜ

ij

(
Q∑

q=1

cqij�qij − xij

)

−0.5T

{
cH

ij

Q∑
q=1

cqij�qij + cH
i0

[(
Q∑

q=1

cqij�qij − xij

)
∨ 0

]}}
≤ C̄

J∑
j=1

{
I∏

i=1

[
1 −

(
Q∑

q=1

cqij�qij − xij

)
/
(

NjZij

)]Zij
}

Nj/

(
J∑

j=1

Nj

)
≥ ˛

I∑
i=1

{
J∑

j=1

[(
Q∑

q=1

cqij�qij − xij

)
∨ 0

]
− xi0

}
≤ B̄o

I∑
i=1

Vixij ≤ v̄j, j = 0, 1, 2, · · ·, J

I∑
i=1

Wixij ≤ w̄j, j = 0, 1, 2, · · ·, J

xij ∈ N, i = 1, 2, · · ·, I, j = 0, 1, 2, · · ·, J.

(37)

In order to solve this model, the genetic algorithm has run

with 10,000 generations. Optimal solution of the expected model

is shown in Table 3.

Table 3
Optimal stock levels based on MEBO model.

Stock Levels Depot (Base 0) Base 1 Base 2

Item 1 3 57 58

Item 2 2 44 42

Table 4
Optimal stock levels based on MBRO model.

Stock Levels Depot (Base 0) Base 1 Base 2

Item 1 2 58 58

Item 2 2 44 42

Similarly, the minimal backorder rate model can be obtained,

which is omitted in this example. The optimal solution is shown in

Table 4.

It can be found from Table 4 that the results of two models are

generally agreeable. There exists a minute difference between two

results, which is caused by the fact that the data of constraints given

as known parameters in the two models are not entirely consistent,

and it exerts no influence on the availability of the two models.

Above all, the models are effective in solving optimization problems

with statistic data.

9. Conclusion

This paper mainly presented recent studies about spare part

inventory optimization problem with uncertain demands; a new

method was introduced to deal with this issue. A minimal expected

backorder model and a minimal backorder rate model have been

proposed in this paper, which are based on a multi-echelon inven-

tory supply system. Meanwhile, some equivalent crisp models and

optimal solutions with genetic algorithm have been obtained. Obvi-

ously, it becomes achievable to optimize the stock level of spares

without massive statistic data. And it has been proved that the

uncertain optimization models are viable and effective through the

last numerical example.

Our main purpose is to give a novel sight of modeling in uncer-

tainty conditions. This paper just provided a starting point in spare

parts supply system with application of uncertainty theory. Some

conditions were inevitably simplified, such as the no lateral supply

assumption, to focus on the essence of the problem with ignor-

ing side conditions. Therefore, more endeavors are still needed to

improve the models to adapt to the complex application environ-

ment.
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Abstract Reliability analysis of a system based on probability theory has been widely
studied and used. Nevertheless, it sometimes meets with one problem that the compo-
nents of a system may have only few or even no samples, so that we cannot estimate
their probability distributions via statistics. Then reliability analysis of a system based
on uncertainty theory has been proposed. However, in a general system, some compo-
nents of the system may have enough samples while some others may have no samples,
so the reliability of the system cannot be analyzed simply based on probability theory
or uncertainty theory. In order to deal with this type systems, this paper proposes a
method of reliability analysis based on chance theory which is a generalization of
both probability theory and uncertainty theory. In order to illustrate the method, some
common systems are considered such as series system, parallel system, k-out-of-n
system and bridge system.

Keywords Uncertainty theory · Uncertain random variable · Chance measure ·
Reliability · Boolean system

1 Introduction

System reliability analysis plays a crucial role in engineering since the occurrence
of failures maybe lead to catastrophic consequences. Most researchers assumed each
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component in the system works with a given probability and studied the system reliabil-
ity from mathematical aspect. In 1947, Freudethal first developed structural reliability
that is the application of probabilistic methods. Then Cornell (1969) proposed a struc-
tural reliability index. From then on, reliability analysis based on probability theory
has got many significant achievements.

Before applying probability theory to practical problem, a fundamental premise is
to estimate probability distribution that is close enough to frequency. Otherwise, the
law of large numbers is no longer valid. In fact, we sometimes have no observed date
because of the technological or economical difficulties. In this case, we have to invite
the experts to evaluate their belief degree that a component works well. However, Liu
(2015) pointed that human beings usually estimate a much wider range of values than
the object actually takes. Therefore, the belief degrees deviate far from the frequency.
If we still take human belief degrees as probability distribution, we maybe cause a
counterintuitive result that was given by Liu (2012).

In order to model the belief degree, an uncertainty theory was founded by Liu
(2007). It satisfies normality, duality, subadditivity and product axioms in mathe-
matics. Nowadays, uncertainty theory has become a branch of pure mathematics
and has been widely applied in many fields such as uncertain programming (Liu
2009a, b), uncertain risk analysis (Liu 2010a, b), and uncertain reliability analysis
(Liu 2010b).

In a general system, some components may have enough samples to ascertain their
functioning probabilities, while some others may have no samples. In order to deal
with this phenomenon, Liu (2013a) proposed chance theory as a mixture of probability
theory and uncertainty theory in 2013. After that, chance theory was developed steadily
and applied widely in many fields such as uncertain random programming (Liu 2013b;
Ke et al. 2014; Zhou et al. 2014), uncertain risk analysis (Liu and Ralescu 2014, 2016),
uncertain random graph (Liu 2014), and uncertain random network (Liu 2014; Sheng
and Gao 2014).

Probability theory is applicable when we have a large amount of samples, and
uncertainty theory is applicable when we have no samples but belief degree from
the experts. Chance theory, as a mixture of probability theory and uncertainty theory,
is applicable for a complex system containing uncertainty and randomness. In this
paper, we aim at employing chance theory to analyze the reliability of a complex
system involving both uncertainty and randomness. The rest of this paper is organized
as follows. Section 2 introduces some basic concepts about uncertain variable and
uncertain random variable. Section 3 proposes the concept of reliability index of an
uncertain random system, and the reliability of a series system and a parallel system
will be analyzed. Section 4 proves a reliability index theorem. A k-out-of-n system,
parallel–series system, series–parallel system and bridge system are studied. At last,
some conclusions are made in Sect. 5.

2 Preliminaries

In this section, we introduce some basic concepts and results in uncertainty theory and
chance theory.
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2.1 Uncertainty theory

Uncertainty theory was founded by Liu (2007) and refined by Liu (2010a). Math-
ematically, uncertainty theory satisfies normality, duality, subadditivity and product
axioms. Practically, uncertainty is anything that is described by belief degrees.

Definition 2.1 (Liu 2007) Let � be a nonempty set, and L be a σ -algebra over �. A
set function M is called an uncertain measure if it satisfies the following three axioms,

Axiom 1 M{�} = 1 for the universal set �.
Axiom 2 M{�} + M{�c} = 1 for any event � ∈ L.
Axiom 3 For every countable sequence of events �1,�2, . . . , we have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i }.

In this case, the triple (�,L,M) is called an uncertainty space.

Besides, in order to provide the operational law, another axiom named product
axiom was proposed by Liu (2009a).

Axiom 4 Let (�k,Lk,Mk) be uncertainty spaces for k = 1, 2, . . .. The product uncer-
tain measure M is an uncertain measure satisfying

M

{ ∞∏
k=1

�k

}
=

∞∧
k=1

Mk{�k}

where �k are arbitrarily chosen events from Lk for k = 1, 2, . . ., respec-
tively.

Definition 2.2 (Liu 2007) An uncertain variable is a measurable function ξ from an
uncertainty space (�,L,M) to the set of real numbers, i.e., for any Borel set B of real
numbers, we have

{ξ ∈ B} = {γ ∈ � | ξ(γ ) ∈ B} ∈ L.

Definition 2.3 (Liu 2007) The uncertainty distribution � of an uncertain variable ξ

is defined by
�(x) = M{ξ ≤ x}

for any real number x .

If the uncertainty distribution �(x) of ξ has an inverse function �−1(α) for α ∈
(0, 1), then ξ is called a regular uncertain variable, and �−1(α) is called the inverse
uncertainty distribution of ξ. Inverse uncertainty distribution plays an important role
in the operations of independent uncertain variables.
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Definition 2.4 (Liu 2007) The uncertain variables ξ1, ξ2, . . . , ξn are said to be inde-
pendent if

M

{
n⋂

i=1

(ξi ∈ Bi )

}
=

n∧
i=1

M {ξi ∈ Bi }

for any Borel sets B1, B2, . . . , Bn of real numbers.

Theorem 2.1 (Liu 2010a) Let ξ1, ξ2, . . . , ξn be independent uncertain variables with
regular uncertainty distributions �1,�2, . . . , �n, respectively. Assume the function
f (x1, x2, . . . , xn) is strictly increasing with respect to x1, x2, . . . , xm, and strictly
decreasing with respect to xm+1, xm+2, . . . , xn . Then the uncertain variable ξ =
f (ξ1, ξ2, . . . , ξn) has an inverse uncertainty distribution

�−1(α) = f
(
�−1

1 (α), . . . , �−1
m (α),�−1

m+1(1 − α), . . . , �−1
n (1 − α)

)
.

An uncertain variable is called Boolean if it takes values either 0 or 1. The following
is a Boolean uncertain variable

ξ =
{

1 with uncertain measure a
0 with uncertain measure 1 − a

where a ∈ [0, 1]. The operational law of Boolean system was introduced by Liu
(2010a) as follows.

Theorem 2.2 (Liu 2010a) Assume that ξ1, ξ2, . . . , ξn are independent Boolean uncer-
tain variables, i.e.,

ξi =
{

1 with uncertain measure ai

0 with uncertain measure 1 − ai

for i = 1, 2, . . . , n. If f is a Boolean function, then ξ = f (ξ1, ξ2, . . . , ξn) is a Boolean
uncertain variable such that

M{ξ = 1} =

⎧⎪⎨⎪⎩
sup

f (x1,x2,...,xn)=1
min

1≤i≤n
νi (xi ), if sup

f (x1,x2,...,xn)=1
min

1≤i≤n
νi (xi ) < 0.5

1 − sup
f (x1,x2,...,xn)=0

min
1≤i≤n

νi (xi ), if sup
f (x1,x2,...,xn)=1

min
1≤i≤n

νi (xi )≥0.5

where xi take values either 0 or 1, and νi are defined by

νi (xi ) =
{

ai , if xi = 1
1 − ai , if xi = 0

for i = 1, 2, . . . , n, respectively.
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Definition 2.5 (Liu 2007) Let ξ be an uncertain variable. Then the expected value of
ξ is defined by

E[ξ ] =
∫ +∞

0
M{ξ ≥ r}dr −

∫ 0

−∞
M{ξ ≤ r}dr.

For an uncertain variable ξ with uncertainty distribution �(x), its expected value
can be expressed as

E[ξ ] =
∫ +∞

0
(1 − �(x))dx −

∫ 0

−∞
�(x)dx .

And if ξ has an inverse uncertainty distribution function �−1(α), then

E[ξ ] =
∫ 1

0
�−1(α)dα.

Theorem 2.3 (Liu and Ha 2010) Assume ξ1, ξ2, . . . , ξn are independent uncer-
tain variables with regular uncertainty distributions �1,�2, . . . , �n, respectively.
If f (x1, x2, . . . , xn) is strictly increasing with respect to x1, x2, . . . , xm and strictly
decreasing with respect to xm+1, xm+2, . . . , xn, then the uncertain variable ξ =
f (ξ1, ξ2, . . . , ξn) has an expected value

E[ξ ] =
∫ 1

0
f
(
�−1

1 (α), . . . , �−1
m (α),�−1

m+1(1 − α), . . . , �−1
n (1 − α)

)
dα

provided that E[ξ ] exists.

2.2 Chance theory

Chance theory, as a mixture of uncertainty theory and probability theory, was founded
by Liu (2013a, b) to deal with a system exhibiting both randomness and uncertainty.
The basic concept is the chance measure of an uncertain random event in a chance
space.

Let (�,L,M) be an uncertainty space, and (
,A, Pr) be a probability space. Then

(�,L,M) × (
,A, Pr) = (� × 
,L × A,M × Pr)

is called a chance space.

Definition 2.6 (Liu 2013a) Let (�,L,M) × (
,A, Pr) be a chance space, and � ∈
L×A be an uncertain random event. Then the chance measure Ch of � is defined by

Ch{�} =
∫ 1

0
Pr{ω ∈ 
 | M{γ ∈ � | (γ, ω) ∈ �} ≥ r}dr.
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Theorem 2.4 (Liu 2013a) Let (�,L,M) × (
,A, Pr) be a chance space. Then the
chance measure Ch{�} is a monotone increasing function of � and

Ch{� × A} = M{�} × Pr{A}

for any � ∈ L and any A ∈ A. Especially, we have

Ch{∅} = 0, Ch{� × 
} = 1.

Definition 2.7 (Liu 2013a) An uncertain random variable ξ is a measurable function
from a chance space (�,L,M) × (
,A, Pr) to the set of real numbers, i.e.,

{ξ ∈ B} = {(γ, ω) | ξ(γ, ω) ∈ B}

is an uncertain random event for any Borel set B.

When an uncertain random variable ξ(γ, ω) does not vary with γ , it degenerates to
a random variable. When an uncertain random variable ξ(γ, ω) does not vary with ω,
it degenerates to an uncertain variable. Therefore, a random variable and an uncertain
variable are two special uncertain random variables.

Example 2.1 Let ξ1, ξ2, . . . , ξm be random variables and η1, η2, . . . , ηn be uncertain
variables. If f is a measurable function, then

τ = f (ξ1, ξ2, . . . , ξm, η1, η2, . . . , ηn)

is an uncertain random variable determined by

τ(γ, ω) = f (ξ1(ω), ξ2(ω), . . . , ξm(ω), η1(γ ), η2(γ ), . . . , ηn(γ ))

for all (γ, ω) ∈ � × 
.

Definition 2.8 (Liu 2013a) Let ξ be an uncertain random variable. Then its chance
distribution is defined by

�(x) = Ch{ξ ≤ x}
for any x ∈ 
.

As two special uncertain random variables, the chance distribution of a random
variable ξ is just its probability distribution

�(x) = Ch{ξ ≤ x} = Pr{ξ ≤ x},

and the chance distribution of an uncertain variable ξ is just its uncertainty distribution

�(x) = Ch{ξ ≤ x} = M{ξ ≤ x}.
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Theorem 2.5 (Liu 2013b) Let η1, η2, . . ., ηm be independent random variables with
probability distributions �1, �2, . . . , �m, respectively, and τ1, τ2, . . . , τn be uncer-
tain variables. Then the uncertain random variable

ξ = f (η1, η2, . . . , ηm, τ1, τ2, . . . , τn)

has a chance distribution

�(x) =
∫


m
F(x; y1, y2, . . ., ym)d�1(y1)d�2(y2) . . . d�m(ym)

where F(x; y1, y2, . . . , ym) is the uncertainty distribution of the uncertain variable

f (y1, y2, . . . , ym, τ1, τ2, . . . , τn)

for any real numbers y1, . . . , ym.

Definition 2.9 (Liu 2013a) Let ξ be an uncertain random variable. Then its expected
value is

E[ξ ] =
∫ +∞

0
Ch{ξ ≥ r}dr −

∫ 0

−∞
Ch{ξ ≤ r}dr

provided that at least one of the two integrals is finite.

For an uncertain random variable ξ with chance distribution �(x), its expected
value can be briefed as

E[ξ ] =
∫ +∞

0
(1 − �(x))dx −

∫ 0

−∞
�(x)dx .

If �(x) is regular, then

E[ξ ] =
∫ 1

0
�−1(α)dα.

Theorem 2.6 (Liu 2013b) Let η1, η2, . . . , ηm be independent random variables with
probability distributions �1, �2, . . . , �m, respectively, and let τ1, τ2, . . . , τn be uncer-
tain variables. Then the uncertain random variable

ξ = f (η1, . . . , ηm, τ1, . . . , τn)

has an expected value

E[ξ ] =
∫


m
E[ f (y1, . . . , ym, τ1, . . . , τn)]d�1(y1) . . . d�m(ym)

where E[ f (y1, . . ., ym, τ1, . . ., τn)] is the expected value of the uncertain variable
f (y1, . . ., ym, τ1, . . . , τn) for any given real numbers y1, . . . , ym.
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3 Reliability of uncertain random system

A function f is called a Boolean function if it maps {0, 1}n to {0, 1}. It is usually used
to model the structure of a Boolean system.

Definition 3.1 Assume that a Boolean system ξ is comprised of n components
ξ1, ξ2, . . ., ξn . Then a Boolean function f is called its structure function if

ξ = 1 if and only if f (ξ1, ξ2, . . . , ξn) = 1. (1)

Obviously, when f is the structure function of the system, we also have ξ = 0 if
and only if f (ξ1, ξ2, . . . , ξn) = 0. For a series system containing n components, the
structure function is

f (ξ1, . . . , ξn) =
n∧

i=1

ξi .

For a parallel system containing n components, the structure function is

f (ξ1, . . . , ξn) =
n∨

i=1

ξi .

For a k-out-of-n system, the structure function is

f (ξ1, . . . , ξn) =

⎧⎪⎪⎨⎪⎪⎩
1, if

n∑
i=1

ξi ≥ k

0, if
n∑

i=1
ξi < k.

In a complex system, some components may have enough samples to estimate
their probability distributions, and can be regarded as random variables, while some
others may have no samples, and can only be evaluated by the experts and regarded as
uncertain variables. In this case, the system cannot be simply modeled by a stochastic
system or an uncertain system. Then we will employ uncertain random variable to
model the system, and analyze its reliability based on chance theory.

Definition 3.2 The reliability index of an uncertain random system ξ is defined as the
chance measure that the system is working, i.e.,

Reliabili t y = Ch{ξ = 1}. (2)

If all uncertain random components degenerate to random ones, then the reliability
index is the probability measure that the system is working. If all uncertain random
components degenerate to uncertain ones, then the reliability index (Liu 2010b) is the
uncertain measure that the system is working.
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Example 3.1 (Series System) Consider a series system containing independent ran-
dom components ξ1, ξ2, . . ., ξm with reliabilities a1, a2, . . . , am , and independent
uncertain components η1, η2, . . . , ηn with reliabilities b1, b2, . . . , bn , respectively.
Since the structure function is

f (ξ1, . . . , ξm, η1, . . . , ηn) =
(

m∧
i=1

ξi

)
∧
⎛⎝ n∧

j=1

η j

⎞⎠ ,

we have

Reliabili t y = Ch

⎧⎨⎩
(

m∧
i=1

ξi

)
∧
⎛⎝ n∧

j=1

η j

⎞⎠ = 1

⎫⎬⎭
= Ch

⎧⎨⎩
(

m∧
i=1

ξi = 1

)
∩
⎛⎝ n∧

j=1

η j = 1

⎞⎠⎫⎬⎭
= Pr

{
m⋂

i=1

(ξi = 1)

}
× M

⎧⎨⎩
n⋂

j=1

(η j = 1)

⎫⎬⎭
=
(

m∏
i=1

Pr{ξi = 1}
)

×
⎛⎝ n∧

j=1

M{η j = 1}
⎞⎠

=
(

m∏
i=1

ai

)
·
⎛⎝ n∧

j=1

b j

⎞⎠ .

Remark 3.1 If the series system degenerates to a system containing only random
components ξ1, ξ2, . . . , ξm with reliabilities a1, a2, . . . , am , then

Reliabili t y =
m∏

i=1

ai .

If the series system degenerates to a system containing only uncertain components
η1, η2, . . ., ηn with reliabilities b1, b2, . . . , bn , then

Reliabili t y =
n∧

j=1

b j .

Example 3.2 (Parallel System) Consider a parallel system containing independent
random components ξ1, ξ2, . . . , ξm with reliabilities a1, a2, . . . , am , and independent
uncertain components η1, η2, . . . , ηn with reliabilities b1, b2, . . . , bn , respectively.
Since the structure function is
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f (ξ1, . . . , ξm, η1, . . . , ηn) =
(

m∨
i=1

ξi

)
∨
⎛⎝ n∨

j=1

η j

⎞⎠ ,

we have

Reliabili t y = Ch

⎧⎨⎩
(

m∨
i=1

ξi

)
∨
⎛⎝ n∨

j=1

η j

⎞⎠ = 1

⎫⎬⎭
= 1 − Ch

⎧⎨⎩
(

m∨
i=1

ξi

)
∨
⎛⎝ n∨

j=1

η j

⎞⎠ = 0

⎫⎬⎭
= 1 − Ch

⎧⎨⎩
(

m⋂
i=1

(ξi = 0)

)
∩
⎛⎝ n⋂

j=1

(η j = 0)

⎞⎠⎫⎬⎭
= 1 − Pr

{
m⋂

i=1

(ξi = 0)

}
× M

⎧⎨⎩
n⋂

j=1

(η j = 0)

⎫⎬⎭
= 1 −

(
m∏

i=1

Pr{ξi = 0}
)

×
⎛⎝ n∧

j=1

M{η j = 0}
⎞⎠

= 1 −
(

m∏
i=1

(1 − ai )

)
·
⎛⎝ n∧

j=1

(1 − b j )

⎞⎠ .

Remark 3.2 If the parallel system degenerates to a system containing only random
components ξ1, ξ2, . . . , ξm with reliabilities a1, a2, . . . , am , then

Reliabili t y = 1 −
m∏

i=1

(1 − ai ).

If the series system degenerates to a system containing only uncertain components
η1, η2, . . ., ηn with reliabilities b1, b2, . . . , bn , then

Reliabili t y = 1 −
⎛⎝ n∧

j=1

(1 − b j )

⎞⎠ =
n∨

j=1

b j .

4 Reliability index formula

This section aims at giving a formula to calculate the reliability of a system involving
both random variables and uncertain variables.
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Theorem 4.1 Assume that a Boolean system has a structure function f and contains
independent random components η1, η2, . . . , ηm with reliabilities a1, a2, . . . , am,
respectively, and independent uncertain components τ1, τ2, . . . , τn with reliabilities
b1, b2, . . . , bn, respectively. Then the reliability index of the uncertain random system
is

Reliabili t y =
∑

(y1,...,ym )∈{0,1}m

(
m∏

i=1

μi (yi )

)
· Z(y1, y2, . . . , ym) (3)

where

Z(y1, . . . , ym) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sup
f (y1,...,ym ,z1,...,zn)=1

min
1≤ j≤n

ν j (z j ),

if sup
f (y1,...,ym ,z1,...,zn)=1

min
1≤ j≤n

ν j (z j ) < 0.5

1 − sup
f (y1,...,ym ,z1,...,zn)=0

min
1≤ j≤n

ν j (z j ),

if sup
f (y1,...,ym ,z1,...,zn)=1

min
1≤ j≤n

ν j (z j ) ≥ 0.5,

(4)

μi (yi ) =
{

ai if yi = 1
1 − ai if yi = 0,

(i = 1, 2, . . . , m), (5)

ν j (z j ) =
{

b j if z j = 1
1 − b j if z j = 0

( j = 1, 2, . . . , n). (6)

Proof It follows from Definition 3.1 of structure function and Definition 3.2 of relia-
bility index that

Reliabili t y = Ch{ f (η1, . . . , ηm, τ1, . . . , τn) = 1}.

By the operational law of uncertain random variables (Theorem 2.5), we have

Reliabili t y =
∑

(y1,...,ym )∈{0,1}m

(
m∏

i=1

μi (yi )

)
· M{ f (y1, . . . , ym, τ1, . . . , τn) = 1}.

When (y1, . . . , ym) is given,

f (y1, . . . , ym, τ1, . . . , τn) = 1

is a Boolean function of uncertain variables. It follows from the operational law of
Boolean system (Theorem 2.2) that

M{ f (y1, . . . , ym, τ1, . . . , τn) = 1} = Z(y1, . . . , ym)

that is determined by (4), and we complete the proof.
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Example 4.1 (k-out-of-n System) Consider a k-out-of-n system containing indepen-
dent random components ξ1, ξ2, . . ., ξm with reliabilities a1, a2, . . . , am , respec-
tively, and independent uncertain components η1, η2, . . ., ηn−m with reliabilities
b1, b2, . . . , bn−m , respectively. Note that the structure function is

f (y1, y2, . . . , ym, z1, z2, . . . , zn−m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if

m∑
i=1

yi +
n−m∑
j=1

z j ≥ k

0, if
m∑

i=1
yi +

n−m∑
j=1

z j < k.

It follows from Theorem 4.1 that the reliability of the uncertain random system is

Reliabili t y =
∑

(y1,...,ym )∈{0,1}m

(
m∏

i=1

μi (yi )

)
· Z(y1, y2, . . . , ym)

in which

μi (yi ) =
{

ai if yi = 1
1 − ai if yi = 0,

Z(y1, y2, . . . , ym) = M

⎧⎨⎩
m∑

i=1

yi +
n−m∑
j=1

η j ≥ k

⎫⎬⎭
=

⎧⎪⎪⎨⎪⎪⎩
the (k −

m∑
i=1

yi )th largest value of b1, b2, . . . , bn−m, if
m∑

i=1
yi < k

1, if
m∑

i=1
yi ≥ k.

Remark 4.1 If the k-out-of-n system degenerates to a system containing only random
components ξ1, ξ2, . . . , ξn with reliabilities a1, a2, . . . , an , respectively. Then

Reliabili t y =
∑

y1+···+yn≥k

(
n∏

i=1

μi (yi )

)
.

If the k-out-n system degenerates to a system containing only uncertain components
η1, η2, . . ., ηn with reliabilities b1, b2, . . . , bn , respectively. Then

Reliabili t y = the kth largest value of b1, b2, . . . , bn .

Example 4.2 (Parallel–series system) Consider a simple parallel–series system in
Fig. 1 containing independent random components ξ1, ξ2 with reliabilities a1, a2,
respectively, and independent uncertain components η1, η2 with reliabilities b1, b2,

respectively.



Reliability analysis in uncertain random system

η1

ξ1

η2

ξ2

Fig. 1 Parallel–series system

Fig. 2 Series–parallel system

ξ2

ξ1

η2

η1

Note that the structure function is

f (ξ1, ξ2, η1, η2) = (ξ1 ∨ η1) ∧ (ξ2 ∨ η2).

It follows from Theorem 4.1 that the reliability index is

Reliability = Ch{(ξ1 ∨ η1) ∧ (ξ2 ∨ η2) = 1}
= Pr{ξ1 = 1, ξ2 = 1} · Z(1, 1) + Pr{ξ1 = 1, ξ2 = 0} · Z(1, 0)

+ Pr{ξ1 = 0, ξ2 = 1} · Z(0, 1) + Pr{ξ1 = 0, ξ2 = 0} · Z(0, 0)

= a1a2 · Z(1, 1) + a1(1 − a2) · Z(1, 0) + (1 − a1)a2 · Z(0, 1)

+ (1 − a1)(1 − a2) · Z(0, 0)

where

Z(1, 1) = M{(1 ∨ η1) ∧ (1 ∨ η2) = 1} = M{1 ∧ 1 = 1} = 1,

Z(1, 0) = M{(1 ∨ η1) ∧ (0 ∨ η2) = 1} = M{1 ∧ η2 = 1} = M{η2 = 1} = b2,

Z(0, 1) = M{(0 ∨ η1) ∧ (1 ∨ η2) = 1} = M{η1 ∧ 1 = 1} = M{η1 = 1} = b1,

Z(0, 0) = M{(0 ∨ η1) ∧ (0 ∨ η2) = 1} = M{η1 ∧ η2 = 1} = b1 ∧ b2.

Thus, the reliability index of the parallel–series system is

Reliabili t y = a1a2 + a1(1 − a2)b2 + (1 − a1)a2b1 + (1 − a1)(1 − a2)(b1 ∧ b2).

Example 4.3 (Series–parallel system) Consider a simple series–parallel system in
Fig. 2 containing independent random components ξ1, ξ2 with reliabilities a1, a2,
respectively, and independent uncertain components η1, η2 with reliabilities b1, b2,

respectively.
Note that the structure function is

f (ξ1, ξ2, η1, η2) = (ξ1 ∧ η1) ∨ (ξ2 ∧ η2).
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Fig. 3 Bridge system

η1

ξ1

η2

ξ2

η3

It follows from Theorem 4.1 that the reliability index is

Reliability = Ch{(ξ1 ∧ η1) ∨ (ξ2 ∧ η2) = 1}
= Pr{ξ1 = 1, ξ2 = 1} · Z(1, 1) + Pr{ξ1 = 1, ξ2 = 0} · Z(1, 0)

+ Pr{ξ1 = 0, ξ2 = 1} · Z(0, 1) + Pr{ξ1 = 0, ξ2 = 0} · Z(0, 0)

= a1a2 · Z(1, 1) + a1(1 − a2) · Z(1, 0) + (1 − a1)a2 · Z(0, 1)

+ (1 − a1)(1 − a2) · Z(0, 0)

where

Z(1, 1) = M{(1 ∧ η1) ∨ (1 ∧ η2) = 1} = M{η1 ∨ η2 = 1} = b1 ∨ b2,

Z(1, 0) = M{(1 ∧ η1) ∨ (0 ∧ η2) = 1} = M{η1 ∨ 0 = 1} = M{η1 = 1} = b1,

Z(0, 1) = M{(0 ∧ η1) ∨ (1 ∧ η2) = 1} = M{0 ∨ η2 = 1} = M{η1 = 2} = b2,

Z(0, 0) = M{(0 ∧ η1) ∨ (0 ∧ η2) = 1} = M{0 ∨ 0 = 1} = 0.

Thus, the reliability index of the series–parallel system is

Reliabili t y = a1a2(b1 ∨ b2) + a1(1 − a2)b1 + (1 − a1)a2b2.

Example 4.4 (Bridge System) Consider a simple bridge system in Fig. 3 contain-
ing independent random components ξ1, ξ2 with reliabilities a1, a2, respectively, and
independent uncertain components η1, η2, η3 with reliabilities b1, b2, b3 respectively.

Note that the structure function is

f (ξ1, ξ2, η1, η2, η3) = (ξ1 ∧ η3) ∨ (η1 ∧ ξ2) ∨ (ξ1 ∧ η2 ∧ ξ2) ∨ (η1 ∧ η2 ∧ η3).

It follows from Theorem 4.1 that the reliability index is

Reliabili t y

= Ch{(ξ1 ∧ η3) ∨ (η1 ∧ ξ2) ∨ (ξ1 ∧ η2 ∧ ξ2) ∨ (η1 ∧ η2 ∧ η3)}
= Pr{ξ1 = 1, ξ2 = 1} · Z(1, 1) + Pr{ξ1 = 1, ξ2 = 0} · Z(1, 0)

+ Pr{ξ1 = 0, ξ2 = 1} · Z(0, 1) + Pr{ξ1 = 0, ξ2 = 0} · Z(0, 0)

= a1a2 · Z(1, 1) + a1(1 − a2) · Z(1, 0) + (1 − a1)a2 · Z(0, 1)

+ (1 − a1)(1 − a2) · Z(0, 0)
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where

Z(1, 1) = M{(1 ∧ η3) ∨ (η1 ∧ 1) ∨ (1 ∧ η2 ∧ 1) ∨ (η1 ∧ η2 ∧ η3) = 1}
= M{η3 ∨ η1 ∨ η2 ∨ (η1 ∧ η2 ∧ η3) = 1}
= M{η3 ∨ η1 ∨ η2 = 1}
= b1 ∨ b2 ∨ b3,

Z(1, 0) = M{(1 ∧ η3) ∨ (η1 ∧ 0) ∨ (1 ∧ η2 ∧ 0) ∨ (η1 ∧ η2 ∧ η3) = 1}
= M{η3 ∨ 0 ∨ 0 ∨ (η1 ∧ η2 ∧ η3) = 1}
= M{η3 = 1}
= b3,

Z(0, 1) = M{(0 ∧ η3) ∨ (η1 ∧ 1) ∨ (0 ∧ η2 ∧ 1) ∨ (η1 ∧ η2 ∧ η3) = 1}
= M{0 ∨ η1 ∨ 0 ∨ (η1 ∧ η2 ∧ η3) = 1}
= M{η1 = 1}
= b1,

Z(0, 0) = M{(0 ∧ η3) ∨ (η1 ∧ 0) ∨ (0 ∧ η2 ∧ 0) ∨ (η1 ∧ η2 ∧ η3) = 1}
= M{0 ∨ 0 ∨ 0 ∨ (η1 ∧ η2 ∧ η3) = 1}
= M{η1 ∧ η2 ∧ η3 = 1}
= b1 ∧ b2 ∧ b3.

Thus, the reliability index of the series–parallel system is

Reliabili t y = a1a2(b1 ∨ b2 ∨ b3) + a1(1 − a2)b3 + (1 − a1)a2b1

+ (1 − a1)(1 − a2)(b1 ∧ b2 ∧ b3).

5 Conclusion

This paper mainly proposed the concept of reliability index in uncertain random
systems. A reliability index theorem was derived to calculate the reliability index.
Moreover, some special common systems in uncertain random environment such as
k-out-of-n system, parallel–series system, series–parallel system and bridge system
were discussed.
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Abstract In this paper, a systematic review of non-probabilistic reliability metrics is conducted to

assist the selection of appropriate reliability metrics to model the influence of epistemic uncertainty.

Five frequently used non-probabilistic reliability metrics are critically reviewed, i.e., evidence-

theory-based reliability metrics, interval-analysis-based reliability metrics, fuzzy-interval-analysis-

based reliability metrics, possibility-theory-based reliability metrics (posbist reliability) and

uncertainty-theory-based reliability metrics (belief reliability). It is pointed out that a qualified reli-

ability metric that is able to consider the effect of epistemic uncertainty needs to (1) compensate the

conservatism in the estimations of the component-level reliability metrics caused by epistemic

uncertainty, and (2) satisfy the duality axiom, otherwise it might lead to paradoxical and confusing

results in engineering applications. The five commonly used non-probabilistic reliability metrics are

compared in terms of these two properties, and the comparison can serve as a basis for the selection

of the appropriate reliability metrics.
� 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Reliability refers to the capacity of a component or a system to
perform its required functions under stated operating condi-

tions for a specified period of time.1 Reliability engineering
has nowadays become an independent engineering discipline,
which measures the reliability by quantitative metrics and con-
trols it via reliability-related engineering activities implemented

in the product lifecycle, i.e., failure mode, effect and criticality
analysis (FMECA),2 fault tree analysis (FTA),3 environmental
stress screening (ESS),4 reliability growth testing (RGT),5 etc.

Among all the reliability-related engineering activities, measur-
ing reliability is a fundamental one.6 Measuring reliability
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refers to quantifying the reliability of a component or system
by quantitative metrics. A key problem in measuring reliability
is how to deal with the uncertainty affecting the product’s reli-

ability. Broadly speaking, uncertainty can be categorized as
aleatory uncertainty which refers to the uncertainty inherent
in the physical behavior of the system,7,8 and epistemic uncer-

tainty which refers to the uncertainty that is caused by incom-
plete knowledge.7,9

In the early years of reliability engineering, reliability has

been measured by probability-based metrics, e.g., in terms of
the probability that the component or system does not fail
(referred to as probabilistic reliability in this paper10), and esti-
mated by statistical methods based on failure data (e.g., see

Ref.11). However, in engineering practice, the available failure
data, if there are any, are often far from sufficient for accurate
statistical estimates.12 Also, the statistical methods do not

explicitly model the actual process that leads to the failure.
Rather, the failure process is regarded as a black box and
assumed to be uncertain, which is described indirectly based

on the observed distribution of the time-to-failure (TTF).
From the perspective of uncertainties, the statistical methods
do not separate the root causes of failures and uncertainties

and therefore, they do not distinguish between aleatory and
epistemic uncertainties.

As technology evolves, modern products often have high
reliability, making it even harder to collect enough failure data,

which severely challenges the use of statistical methods.13 At
the same time, as the knowledge of the failure mechanisms
accumulates, deterministic models are available to describe

the failure process based on the physical knowledge of the fail-
ure mechanisms (referred to as physics-of-failure (PoF) mod-
els14). An alternative method to estimate the probabilistic

reliability is, then, developed based on the PoF models. In this
paper, these methods are referred to as the model-based meth-
ods. Unlike statistical methods, model-based methods treat the

actual failure process as a white box: the TTFs are predicted by
deterministic PoF models, while the uncertainty affecting the
TTF is assumed to be caused by random variations in the
model parameters (aleatory uncertainty). The probabilistic

reliability is, then, estimated by propagating aleatory uncer-
tainties through the model analytically or numerically, e.g.,
by Monte Carlo simulation.15,16 Compared to statistical meth-

ods, model-based methods explicitly describe the actual failure
process (by the deterministic PoF models) and separate the
root cause of failures (assumed to be deterministic) and the

aleatory uncertainty (the random variation of model parame-
ters). The separation of deterministic root causes and aleatory
uncertainty allows the designer to implement parametric
design for reliability, e.g., the reliability-based design optimiza-

tion (RBDO),17,18 tolerance optimization,19,20 etc., which
marks significant advancement in reliability engineering.

From the perspective of uncertainties, only aleatory uncer-

tainty is considered in the model-based methods. In practice,
however, the trustfulness of the predicted reliability is severely
influenced by epistemic uncertainty. As in today’s highly com-

petitive markets, it is more and more frequent to use the
model-based method to measure reliability, due to the severe
shortage on failure data. To better quantify the reliability with

the model-based methods, the effect of epistemic uncertainty
should also be considered. Epistemic uncertainty relates to
the completeness and accuracy of the knowledge: if the failure
process is poorly understood, there will be large epistemic

uncertainty.21–23 For instance, the deterministic PoF model
might not be able to perfectly describe the failure process,
e.g., due to incomplete understanding of the failure causes

and mechanisms.21,24 Besides, the precise values of the model
parameters might not be accurately estimated due to lack of
data in the actual operational and environmental conditions.

Both of these two factors introduce epistemic uncertainty into
the reliability estimation: the more severe the effect of these
factors is, the less trustful the predicted reliability is.

In literature, there are various approaches to measure reli-
ability under epistemic uncertainty, e.g., probability theory
(subjective interpretation25,26), evidence theory,27 interval
analysis,28,29 fuzzy interval analysis,30 possibility theory,31,32

uncertainty theory,33 etc. In this paper, a critical review on
these reliability metrics is conducted to assist the selection of
appropriate metrics. Some researchers and practitioners use

probability theory to describe epistemic uncertainty, taking a
Bayesian interpretation of probability.25,26 In recent years,
problems in dealing with epistemic uncertainty by probabilistic

methods have been pointed out.34,35 Non-probabilistic metrics
have, then, been proposed to model epistemic uncertainty. In
this paper, we discuss these non-probabilistic reliability

metrics.
More specifically, five reliability metrics are discussed in this

paper, i.e., evidence-theory-based reliability metrics, interval-
analysis-based reliability metrics, fuzzy-interval-analysis-based

reliability metrics, possibility-theory-based reliability metrics
(posbist reliability) and uncertainty-theory-based reliability
metrics (belief reliability). They are classified, based on the

mathematical essence of the metrics, as probability-interval-
based andmonotone-measure-based reliabilitymetrics. The for-
mer refers to an interval that contains all the possible reliabili-

ties/failure probabilities, while the latter refers to reliability
metrics that are defined based on a monotone measure (or fuzzy
measure36). A further classification is given in Fig. 1. The

probability-interval-based and monotone-measure-based relia-
bility metrics are reviewed in Sections 2 and 3, respectively.

2. Probability-interval-based reliability metrics

Probability-interval-based reliability metrics (PIB metrics)
describe the effect of epistemic uncertainty by an interval of
values of failure probabilities/reliabilities. The width of the

interval represents the extent of epistemic uncertainty: wide
intervals represent large epistemic uncertainty. When there is
no effect of epistemic uncertainty, the probability interval

becomes a single distribution function of the TTFs. We con-
sider three of the most popular non-probabilistic methods
for epistemic uncertainty representation, i.e., evidence theory,

interval analysis (probability box) and fuzzy interval analysis.
We review each of these three methods separately in the
remaining of this section.

2.1. Evidence-theory-based methods

Evidence theory, also known as Dempster–Shafer theory or as
the theory of belief functions, was established by Shafer37 for

representing and reasoning with uncertain, imprecise and
incomplete information.38 It is a generalization of the Bayesian
theory of subjective probability in the sense that it does not

require probabilities for each event of interest, but bases the
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belief in the truth of an event on the probabilities of other
propositions or events related to it.37 Evidence theory provides
an alternative to the traditional manner in which probability
theory is used to represent uncertainty by means of the speci-

fication of two degrees of likelihood, belief and plausibility, for
each event under consideration. The belief value of an event
measures the degree of belief that the event will occur and

the plausibility value measures the extent to which evidence
does not support the negation of the event. Evidence theory
is applied to describing uncertainty when the application of

probability theory cannot be supported, e.g., when few sam-
ples of data are available to estimate the probability
accurately.37

To obtain the evidence-theory-based reliability metrics, the
first step is to define the frame of discernment:

H ¼ fh1; h2; :::; hmg ð1Þ
where the setH includes all the possible and mutually exclusive
elementary propositions or hypotheses with respect to the

uncertain events. Let Ai (i= 1, 2, ..., 2m) denote the subsets
of H. All the subsets (also called focal sets) compose the power
set of H, which is denoted by 2H. Next, basic probability

assignment (BPA) is assigned to each focal set to represent
our belief in the event associated to it. BPA is essentially a
mapping function m:2H ? [0, 1], which satisfies

(1) mð£Þ ¼ 0

(2)
P

Ai #H
mðAiÞ ¼ 1

In practice, the values of the BPAs are assigned by experts

to represent the effect of epistemic uncertainty. Focal sets and
their associated BPAs comprise the evidence, based on which
the belief and plausibility of an event B can be calculated:

BelðBÞ ¼ P
Ai #B

mðAiÞ

PlðBÞ ¼ P
Ai\B–£

mðAiÞ

8><>: ð2Þ

where Ai denote the focal sets and m(Ai) is its BPA.

The belief in event B is quantified as the sum of the masses
assigned to all sets enclosed by it; hence, it can be interpreted
as a lower bound representing the amount of belief that sup-

ports the event. The plausibility of event B is, instead, the
sum of the BPAs assigned to all sets whose intersection with

event B is not empty; hence, it is an upper bound on the prob-
ability that the event occurs.39 Thus,

BelðBÞ 6 PðBÞ 6 PlðBÞ ð3Þ
When the event B is the failure of a component or system,

Eq. (3) leads to an interval that contains all possible failure
probabilities/reliabilities, representing the effect of epistemic
uncertainty on the reliability estimation: the larger the width
of the interval, the greater the epistemic uncertainty is, and

thus, the less we can trust the estimated reliability.
Rakowsky reviewed some early applications of evidence-

theory-based reliability metrics constructed based on failure

modes and effects analysis (FMEA), event tree analysis
(ETA) and FTA.40 Mourelatos and Zhou used evidence theory
to construct failure probability intervals and applied them in

engineering design optimization.41–43 In reliability-based opti-
mization (RBO), based on the interval of failure probability,
Alyanak et al. developed a new method for projecting gradi-
ents in RBO when available data are not enough.44 Yao

et al. developed a sequential optimization and mixed uncer-
tainty analysis method for RBO, where evidence theory is used
to describe epistemic uncertainty.45 Similar to Bayesian net-

work, the evidential network was developed to construct the
failure probability intervals.46 Yang et al. applied the eviden-
tial network to FTA and calculated the failure probability

intervals.47 Bae et al. constructed failure probability intervals
in large-scale structures based on evidence theory by identify-
ing the failure region and expressing it as a function of the

focus sets.27,48 Considering the large computing cost, Bae
et al. introduced an approximation method to calculate the
failure probability intervals under the framework of evidence
theory.49 Jiang et al. developed an efficient evaluation method

for structure reliability with epistemic uncertainty using evi-
dence theory, which reduced the computation cost compared
with traditional methods.50 To solve the problem of construct-

ing failure intervals with dependent parameters, Jiang et al.
developed a multidimensional evidence-theory model, where
the dependency is addressed by an ellipsoidal model.51 Baraldi

et al. studied the situation in which a number of experts pro-
vided different information about the imprecise parameters,
and belief and plausibility functions are used to develop upper
and lower bounds of cumulative probability functions.52,53 Lo

et al. assessed seismic probabilistic risk of nuclear power plants
and built associated failure probability intervals based on

Fig. 1 Classification of existing non-probabilistic reliability metrics.
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evidence theory.54 Khalaj et al. applied evidence theory to risk-
based reliability analysis.55 Yao et al. studied the uncertainty
quantification in multidisciplinary optimization and developed

a new method to calculate the failure probability intervals
based on optimization in the framework of evidence
theory.56,57

2.2. Interval-analysis-based methods

Another way to construct the interval of failure probabilities

is to use interval analysis (or probability boxes). Given a
model y= f(x), interval analysis assumes that the input vari-
able x is subjected to epistemic uncertainty and is described

by an interval (or convex sets if the input variables are
multidimensional) comprised of an lower bound xL and an
upper bound xU, so that xL 6 x 6 xU. Then, interval math-
ematics or numerical optimization methods are used to

derive the upper and lower bounds of the output variable
y.58 When interval analysis is applied to probabilistic mod-
els, upper and lower bounds of the probability of interests

can be calculated, which form a probability ‘‘box” (p-box)
that contains all possible values of that probability. Since
reliability is calculated by a probabilistic model, the p-box

becomes a natural tool to describe the epistemic uncertainty
influencing the calculated reliability.

Ferson et al. are among the first ones who apply the p-box
to describing and propagating epistemic uncertainty in a relia-

bility model, deriving intervals that contain all possible values
of failure probabilities.59,60 Karanki et al. applied p-box to
evaluate the probability of system failure under the influence

of epistemic uncertainty.61 Using a similar method to describe
epistemic uncertainty, Zhang et al. developed interval Monte
Carlo simulation methods,62 interval importance sampling

methods63 and quasi-Monte Carlo methods64 to calculate the
interval of failure probabilities when the structures are implic-
itly modeled based on a finite element model. Beer et al. devel-

oped a calculation method for failure probability intervals,
which is specially designed for small sample size and is based
on quasi-Monte Carlo simulations.65,66 Xiao et al. put forward
a saddle-point-based approximation method to enhance the

computational efficiency in calculating the interval of struc-
tural failure probability.67 Qiu et al. developed methods to
construct the interval of failure probabilities with small sample

size, using numerical optimization methods.68–70 Crespo et al.
applied p-box to the analysis of polynomial systems subject to
parameter uncertainties.71

2.3. Fuzzy-interval-analysis-based method

Fuzzy-interval-analysis-based method allows the consideration

of both aleatory and epistemic uncertainty simultaneously.34

The method can be regarded as the combination of probability
theory and fuzzy set theory, where the effect of aleatory uncer-
tainty is described by probability distributions, while the effect

of epistemic uncertainty is described by possibility distribu-
tions. For instance, in a model z = f(x, y), the input variable
x might be subject to aleatory uncertainty and described by

a probability density function fX(�); while the other variable
y might be subject to epistemic uncertainty and described by
a possibility distribution Py(�) (often through expert opinion

elicitations).

Kaufmann and Gupta introduced the basic idea of express-
ing randomness (probability) in combination with imprecision
(possibility) via hybrid numbers.72 Ferson et al.73,74 extended

Kaufmann’s work by developing computational rules of
hybrid numbers (i.e., the probability distributions are fuzzily
known), which can be applied in risk assessment. Through

the computational method, the random fuzzy sets can be
obtained and converted to the upper and lower bounds of fail-
ure probability. Guyonnet et al. introduced a hybrid method

to propagate both aleatory and epistemic uncertainties using
fuzzy interval analysis.75 In this method, the possibility distri-
bution function of the output variable z can be first calculated
based on the Monte-Carlo sampling method and the possibil-

ity extension principle, and then used to derive the upper and
lower bounds of failure probabilities based on fuzzy interval
analysis.76 Baudrit et al. developed a postprocessing method

based on belief functions (evidence theory) to extract useful
information and to construct the failure probability bounds
based on the results of the hybrid method,34 and they proved

that the method improved the work of Ferson et al.73,74 and
Guyonnet et al.75 Baraldi and Zio summarized the hybrid
method that jointly propagates probabilistic and possibilistic

uncertainties, and compared the method with pure probabilis-
tic and pure fuzzy methods.77 Based on the work of Baudrit
et al.34 Li and Zio applied the fuzzy interval analysis method
to assess the reliability of a distributed generation system,

which is affected by serious epistemic uncertainty.30 The
hybrid fuzzy interval analysis method has also been applied
successfully in other areas, e.g., reliability assessment of a flood

protection dike78 and a turbo-pump lubricating system.79

Flage et al. used probabilistic-possibilistic computational
framework to propagate uncertainties in FTA, giving rise to

the failure probability bounds of top event.80 Li et al. devel-
oped a hybrid-universal-generating-function-based (HUGF)
method for the fuzzy interval analysis of multi-state systems.81

2.4. Problem with PIB metrics

Although differences exist in the way that the interval of fail-
ure probabilities is constructed, all the three methods reviewed

in Sections 2.1–2.3 use this interval as the reliability metrics.
The width of the interval reflects the extent of epistemic uncer-
tainty. One important problem in reliability theory is how to

calculate the system-level reliability metrics based on the
reliability metrics of the components. Since PIB metrics are
intervals of probabilities, the system-level PIB metrics are cal-

culated based on the laws of probability theory. This fact
causes a common problem for the PIB metrics when applied
to calculate system reliability metrics. Consider the following
example.

Example 1. Consider a series system composed of 30 compo-
nents. Suppose that the real reliability of each component is
0.95. Since the system is subject to epistemic uncertainty, the

PIB metrics are used to quantify the reliability of the
components. We suppose that the reliability interval for each
component is [0.9, 1]. Then, following the laws of probability

theory, the system’s PIB reliability metric will be [0.930, 130] =
[0.04, 1]. This interval is not representative of the actual
uncertainty on the system reliability and obviously too wide to
provide any valuable information in practical applications.
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The reason for the unsatisfactory result in Example 1 is that
the imprecision in the component reliability metrics (the width
of the interval) is amplified by the product law of probability

theory that calculates the intersection of events. The system-
level reliability metric should be able to compensate for the
conservatism in the component-level reliability metrics caused

by the consideration of epistemic uncertainty. Monotone-
measure-based reliability metrics are developed for this aim.

3. Monotone-measure-based reliability metrics

Monotone measure was defined by Choquet as a generaliza-
tion of the classical measure theory.82 Let X be a finite univer-

sal set, and let l be a non-empty family of subsets of X. Then g:
l? [0,1] is a monotone measure on (X, l) if it satisfies the fol-
lowing requirements:

(1) gð£Þ ¼ 0;
(2) 8A;B 2 l; if A#B; then gðAÞ 6 gðBÞ.

Probability measure is a special case of the monotone mea-
sure, which is also additive. As pointed out by Klir and
Smith,83 non-additive monotone measures might be able to

represent broader types of uncertainty than the addictive prob-
ability theory. Therefore, they are applied to developing relia-
bility metrics that model epistemic uncertainty. Typical

monotone-measure-based reliability metrics include posbist
reliability which is based on possibility theory, and belief reli-
ability which is based on uncertainty theory.

3.1. Possibility-theory-based reliability metrics

The most widely applied possibility-theory-based reliability
metric is the posbist reliability. The two basic assumptions of

posbist reliability are32,84

(1) Possibility assumption: the system failure behavior is

fully characterized in the context of possibility measures.
(2) Binary-state assumption: the system demonstrates only

two crisp states, i.e. fully functioning or fully failed. At

any time, the system is in one of the two states.

In posbist reliability theory, lifetime of a system (or a com-
ponent) is a non-negative real-valued fuzzy variable, and the

posbist reliability of a system (or a component) is defined as
the possibility measure that the system (or the component) per-
forms its assigned functions properly during a predefined expo-

sure period in a given environment.84 The epistemic
uncertainty is, then, described and propagated based on possi-
bility theory.

Following the definition of posbist reliability, Cai et al.
developed posbist reliability analysis methods for series, paral-
lel, series–parallel, parallel–series and coherent systems.84,85

Huang et al. proposed detailed posbist reliability analysis
methods for k-out-of-n: G systems.86 Cai et al. studied posbist
reliability behavior of cold stand-by and warm stand-by
systems, considering both full reliable and non-full reliable

conversion switches.87 Utkin et al. extended Cai’s work to
repairable systems and developed a posbist reliability analysis
method based on state transition diagram.88,89 Huang et al.

introduced a posbist reliability fault tree analysis (posbist

FTA) method for coherent systems to evaluate reliability and
safety.90 He et al. developed calculation methods of posbist
reliability for typical systems when the components are sym-

metric Gaussian fuzzy variables.91 Bhattacharjee et al. investi-
gated the posbist reliability of k-out-of-n systems and pointed
out that the posbist reliability does not depend on the number

of components.92

In essence, posbist reliability is a possibility measure. In
possibility theory, the possibility measure P(�) satisfies the

following three axioms:93

Axiom 1. For the empty set £, there is P(£) = 0.

Axiom 2. For the universal set C, there is P(C) = 1.

Axiom 3. For any events K1 and K2 in the universal set C,
there is P(K1 [ K2) = max(P(K1), P(K2)).

Axiom 3 shows that the operation laws of possibility theory
differ from those of probability theory. Therefore, the system

reliability analysis method is also different from that based
on probability theory. For instance, Cai et al. proved that
the system posbist reliability is the minimum one among all

the posbist reliabilities of its components.32 This difference
makes it possible for possibility theory to compensate the con-
servatism caused by epistemic uncertainty in component-level

reliability estimations.

Example 2. Consider a series system composed of 300 com-
ponents. An extreme case is considered where all the compo-
nents are designed with sufficient margins, so that they are

completely reliable and the real reliability should be 1. It is
easy to verify that the system’s reliability is also 1, which
means that the system is highly reliable. However, since the

system is subject to epistemic uncertainty, the estimates of
component-level reliabilities are likely to be conservative. We
suppose, for example, the reliability of each component is

estimated to be R1 = R2 = � � � = R300 = 0.99. If we use
probability theory to model the reliability metric, the system
reliability is

RS ¼ R1R2 � � �R300 ¼ 0:04

It can be seen from the result that the conservatism in
component-level reliability estimates is amplified by the opera-
tion laws of probability theory, which contradicts with our

intuitions since a highly reliable system is judged as highly
unreliable.

If we use the posbist reliability, however, the system relia-

bility is

RS ¼ minðR1;R2; � � � ;R300Þ ¼ 0:99

which avoids the previous counter-intuitive result and demon-
strates that possibility theory can compensate the conservatism

in the component-level reliability estimates caused by epistemic
uncertainty.

3.1.1. Problems with posbist reliability

A major drawback of the possibility-theory-based reliability
metrics is that the possibility measure does not satisfy the dual-
ity axiom, which might lead to counter-intuitive results when

applied in practical reliability-related applications.

Measuring reliability under epistemic uncertainty: Review on non-probabilistic reliability metrics



Example 3. Let event K1 = {The system is working} and

K2 = {The system fails}. It is obvious that the universal set
C = K1 [ K2. Also, we have the posbist reliability and posbist

unreliability to be Rpos =P(K1) and Rpos ¼ PðK2Þ, respec-

tively. According to Axioms 2 and 3, we have

PðCÞ ¼ PðK1 [ K2Þ ¼ maxðRpos;RposÞ ¼ 1 ð4Þ
Therefore, if Rpos does not equal to 1, e.g., Rpos = 0.8, Rpos

must equal to 1. Vice versa, if Rpos does not equal to 1, e.g.,

Rpos ¼ 0:8,Rpos must equal to 1. This is a counterintuitive result

and easily confuses the decision maker in real applications.
Hence, even though designed to consider epistemic uncertainty,
a reliability metric should still satisfy the duality axiom.

3.2. Uncertainty-theory-based reliability metrics

As just explained in Section 3.1.1, one major drawback of the
possibility-theory-based reliability metrics is that possibility

theory does not satisfy the duality axiom. To overcome this
drawback, belief reliability has been developed based on uncer-
tainty theory. Founded by Liu,33,94 uncertainty theory relies

on the uncertain measure to describe the belief degree of events
affected by epistemic uncertainty, which is a monotone mea-
sure based on the following four axioms:

1) Normality axiom: MfCg ¼ 1 for the universal set C.
2) Duality axiom: MfKg þMfKcg ¼ 1 for any event K.
3) Subadditivity axiom: for every countable sequence of

events K1, K2,..., we have Mf[1
i¼1

Kig 6
P1

i¼1MfKig;
4) Product axiom: Let ðCk ; Lk ;MkÞ be uncertainty spaces

for k = 1, 2, .... The product uncertainty measure M
is an uncertain measure satisfying MfQ1

k¼1Kkg ¼
K
1

k¼1
MfKkg, where Lk are r -algebras over Ck, and Kk

are arbitrarily chosen events from Lk for k= 1, 2, ...,
respectively.

Belief reliability was defined by Zeng et al. as the uncer-
tainty measure of the system to perform specified functions
within given time under given operating conditions.95 Zeng

et al. developed an evaluation method for component belief
reliability, which incorporates the influences from design mar-
gin, aleatory uncertainty and epistemic uncertainty.96 The

issue of quantifying the effect of epistemic uncertainty is
addressed by developing a method based on the performance
of engineering activities related to reducing epistemic uncer-
tainty.97,98 The reason why uncertainty theory should be cho-

sen as the theoretical foundation of belief reliability was
explained by Zeng et al.99 by comparing it with other com-
monly encountered theories to deal with epistemic uncertainty,

i.e., evidence theory, possibility theory, Bayesian theory, etc.
system reliability analysis methods are also developed for
coherent systems.95,99

Compared to the PIB metrics, belief reliability uses the min-
imum operation to calculate the belief degree of the intersec-
tion events, and therefore can compensate for the

conservatism in the component-level reliability metrics caused
by the consideration of epistemic uncertainty. Compared to
the possibility-theory-based reliability metrics, belief reliability
satisfies the duality axiom, which avoids the possible paradox-

ical results often encountered in engineering applications of the
possibility-theory-based reliability metrics. Therefore, belief
reliability is a promising reliability metric to measure the reli-

ability affected by epistemic uncertainty. However, the
researches in the theory of belief reliability are far from
mature. In fact, as shown in the classical probability-based reli-

ability theory, there are four major topics in the research of
reliability theory:

(1) How to measure reliability (measurement).

(2) How to evaluate the reliability of a system based on the
reliability of its components (analysis).

(3) How to design the system so that the desired reliability

level can be fulfilled (design).

Table 1 Comparison of five reliability metrics.

Non-probabilistic metrics Theory basis Representative

literature

Method to obtain metric Existing problems

PIB reliability

metrics

Evidence-theory-based

reliability metric

Evidence

theory

42 Use belief and plausibility functions to express

the lower and upper bounds of failure

probability.

The metrics are not

able to compensate

the conservatism in

the estimated

component-level

reliability metrics,

arising from the

consideration of

epistemic

uncertainty.

Interval-analysis-based

reliability metric

Interval

analysis

59, 61 Calculate the maximum and

minimum of failure probability

through interval analysis, given

the range of input parameters.

Fuzzy-interval-analysis-

based reliability metric

Fuzzy

interval

analysis

30, 34 First establish the possibility distribution of

failure probability through Monte Carlo

simulation and fuzzy interval analysis, and

then obtain the bounds of failure probability

via evidence theory.

Monotone-

measure-

based

reliability

metrics

Posbist reliability Possibility

theory

85 Use possibility measure to calculate products’

reliability.

The metric does not

satisfy duality

axiom.

Belief reliability Uncertainty

theory

95 Obtain the belief reliability through calculating

products’ design margin, aleatory uncertainty

factor and epistemic uncertainty factor.

The research is far

from mature.
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(4) How to demonstrate that the system satisfies its reliabil-

ity requirements (demonstration).

Among the four topics, measurement is the most funda-

mental one. Since belief reliability is an entirely different relia-
bility metric from the classical probability-based reliability
metrics, new analysis, design and demonstration methods are
also needed for the theory of belief reliability. As reviewed

before, however, current researches on belief reliability only
concentrate on the first two problems. The problems of design
and demonstration are still relatively unexplored and deserve

further investigations.
To summarize, we make a comparison of the five reviewed

reliability metrics (see Table 1) in terms of theory basis, meth-

ods to obtain metric, and existing problems. This will help peo-
ple to choose appropriate reliability metric according to
different demands and situations.

4. Conclusions

In this paper, a systematic review is conducted on the non-

probabilistic reliability metrics that are used to describe the
effect of epistemic uncertainty. Five reliability metrics are dis-
cussed, i.e., the evidence-theory-based, interval-analysis-based,
fuzzy-interval-analysis-based, possibility-theory-based (posbist

reliability) and uncertainty-theory-based reliability metrics
(belief reliability). Among them, the former three provide, in
essence, an interval that contains all the possible values of

the reliabilities/failure probabilities whereas the latter two give
monotone measures.

An investigation of the five metrics reveals two important

features that a qualified reliability metric under epistemic
uncertainty should possess: (1) it should be able to compensate
the conservatism in the component-level reliability metrics
caused by the consideration of epistemic uncertainty, and (2)

it should satisfy the duality axiom, otherwise it might lead to
paradoxical and confusing results in engineering applications.

Finally, the five reliability metrics are compared with

respect to the above two features, as well as other important
characteristics which can be used to assist the selection of
appropriate reliability metrics considering the effect of epis-

temic uncertainty.
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Abstract DEA is a non-parametric productive efficiency
measurement method for operations with multiple inputs and
multiple outputs. An issue which has received widespread
attention in rapidly growing field of DEA is the sensitivity
and stability of the evaluating results to perturbations in the
data. Due to the uncertainty of the data in real life, this paper
will perform a sensitivity and stability analysis of the additive
model with uncertain inputs and output. Some theories of
the uncertain DEA model based on uncertainty theory will
be given. It is followed by some computation methods of the
stable regions to the efficient and inefficient DMUs. Finally,
a numerical example will be presented to give an illustration
of the sensitivity and stability analysis.

Keywords Data envelopment analysis · Uncertain
measure · Uncertainty distribution · Efficiency · Sensitivity ·
Stability

Communicated by V. Loia.

M. Wen · R. Kang · Y. Yang
Science and Technology on Reliability and Environmental
Engineering Laboratory, School of Reliability and Systems
Engineering, Beihang University, Beijing 100191, China
e-mail: wenmeilin@buaa.edu.cn

R. Kang
e-mail: kangrui@buaa.edu.cn

Y. Yang
e-mail: zzpcissy2006@163.com

Z. Qin (B)
School of Economics and Management Science, Beihang University,
Beijing 100191, China
e-mail: qin@buaa.edu.cn

1 Introduction

Data envelopment analysis (DEA), which was originated by
Charnes et al. (1978) in 1978, is a mathematical method for
determining the relative efficiency of decision-making units
(DMUs) with multiple input and output. This was followed
by a variety of theoretical research work, including those by
Charnes et al. (1985), Petersen (1990), Tone (2001), and so
on. In about 30 years, DEA has grown into a powerful ana-
lytical tool for evaluating system performance and has been
successfully applied to a host of many different types of enti-
ties engaged in a wide variety of activities in many contexts
worldwide. However, uncertainty, such as a measurement
error, may be incorporated in the observed data. This indi-
cates the necessity to assess the sensitivity of classifications
in DEA.

The topic of sensitivity and stability analysis has taken
a variety of forms in the DEA literature. Research on ana-
lytical approaches to sensitivity analysis in DEA was initi-
ated in Charnes et al. (1985), which examined the change
in a single input or output. This work was extended and
improved in a series of papers (Charnes and Neralic 1992;
Neralic 1997). Another avenue for sensitivity analysis was
provided by Zhu (1996) and Seiford and Zhu (1998), who
obtained the largest stability region when inputs or outputs
changed individually. The two approaches described above
use DEA “envelopment models” to treat one DMU at a time.
Extensions are needed if all data vary simultaneously until
the status of at least one DMU is changed. An approach ini-
tiated in Thompson et al. (1994) moves in this direction in
that manner. Seiford and Zhu (1999) generalized the tech-
nique in Zhu (1996) and Seiford and Zhu (1998) to the
case, where the efficiency of the underevaluation efficient
DMU deteriorates while the efficiencies of the other DMUs
improve.
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The original DEA models assume that inputs and out-
puts are measured by exact values. However, in many situ-
ations, inputs and outputs are volatile and complex, so that
they are difficult to measure in an accurate way. Thus, some
researchers employed probability theory to establish some
stochastic DEA models. Sengupta (1982) generalized the
stochastic DEA model by using the expected value to the
stochastic inputs and outputs. Banker (1993) incorporated
statistical elements into DEA and developed an approach
which effects inferences in statistical noise. Many papers
(Olesen and Petersen 1995; Banker 1986; Cooper et al. 1996)
have introduced chance-constrained programming into DEA
to accommodate stochastic variations in data. Recently, many
researchers have addressed this problem with fuzzy data. We
can find several fuzzy approaches to the assessment of effi-
ciency in the DEA literature, e.g., Kao and Liu (2000), Guo
and Tanaka (2001) and Lertworasirikul et al. (2003).

In 2007, Liu (2007) founded an uncertainty theory to deal
with human’s belief degree mathematically and refined it in
2010 (Liu 2010). As we know, to obtain the probability distri-
bution, we need a lot of samples. However, due to economical
or technological reasons, sometimes we have no samples. In
this case, we have to invite the domain experts to evaluate the
belief degree that each possible event happens. Since humans
tend to overweigh unlikely events (Kahneman and Tversky
1979), the belief degree has a much larger variance than the
frequency and cannot be treated as a probability distribu-
tion of a random variable. In this case, we can regard the
belief degree as an uncertainty distribution of some uncer-
tain variable and deal with it via uncertainty theory. Uncertain
programming, as a spectrum of mathematical programming
involving uncertain variables, was proposed by Liu (2009) in
2009. Then, uncertain multilevel programming (Liu and Yao
2014), as well as uncertain multiobjective programming (Liu
and Chen 2014), has been further studied. Since then, uncer-
tainty theory has been used to solve a variety of real optimal
problems, including facility allocation problem (Gao 2012),
reliability analysis (Zeng et al. 2013) and so on. Since Wen
et al. (2014) have proposed a new DEA model with uncertain
inputs and outputs, this paper will discuss the sensitivity and
stability in DEA with uncertain data.

Cognitive analysis which has been developed for many
years in research on semantic data analysis (Duda et al. 2001)
is another approach to deal with the uncertain data. Cognitive
resonance was used for cognitive data analysis systems by
Ogiela and Ogiela (2011). Tadeusiewicz et al. (2006) have
applied cognitive analysis to business planning and decision
support systems.

The remainder of this paper is organized as follows. Sec-
tion 2 will introduce some basic concepts and properties
about uncertain variables. Some introduction to uncertain
DEA model proposed by Wen et al. (2014) is given in Sect. 3.
Based on some theories, the stable regions of the inefficient

DMUs will be given in Sect. 4. Section 5 will propose some
new uncertain DEA models and some new theories to give the
stable regions of the efficient DMUs. In Sect. 6, the computa-
tion methods of the stable regions are proposed. Finally, the
analysis of the sensitivity and stability is introduced through
a numerical example in Sect. 7.

2 Preliminaries

The uncertainty theory was founded by Liu (2007) in 2007
and refined by Liu (2010) in 2010. Nowadays, uncertainty
theory has become a branch of axiomatic mathematics for
modeling human uncertainty. In this section, we will state
some basic concepts and results on uncertain variables. These
results are crucial for the remainder of this paper.

Let � be a nonempty set, and L a σ -algebra over �. Each
element � ∈ L is assigned a number M{�} ∈ [0, 1]. To
ensure that the number M{�} has certain mathematical prop-
erties, Liu (2007) presented the four axioms:

Axiom 1. M{�} = 1 for the universal set �.
Axiom 2. M{�} + M{�c} = 1 for any event �.
Axiom 3. For every countable sequence of events �1,�2,

. . . , we have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i }.

Axiom 4. Let (�k,Lk, Mk) be uncertainty spaces for k =
1, 2, . . . , then the product uncertain measure M
is an uncertain measure satisfying

M

{ ∞∏
k=1

�k

}
=

∞∧
k=1

Mk{�k}

where �k are arbitrarily chosen events from Lk

for k = 1, 2, . . ., respectively.

If the set function M satisfies the first three axioms, it is
called an uncertain measure.

Definition 1 (Liu 2007) Let � be a nonempty set, L a σ -
algebra over �, and M an uncertain measure. Then the triplet
(�,L, M) is called an uncertainty space.

Definition 2 (Liu 2007) An uncertain variable is a measur-
able function ξ from an uncertainty space (�,L, M) to the
set of real numbers, i.e., for any Borel set B of real numbers,
the set

{ξ ∈ B} = {γ ∈ �}|ξ(γ ) ∈ B} (1)

is an event.



Analysis of additive model in uncertain DEA

......................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ...............

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

................

...............

x

Φ(x)

0

1

a cb

0.5

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
..................................................................... ................................................................................................................................................

...............................................

Fig. 1 Zigzag uncertainty distribution

Definition 3 (Liu 2009) The uncertain variables ξ1, ξ2, . . . ,

ξn are said to be independent if

M

{
n⋂

i=1

(ξi ∈ Bi )

}
=

n∧
i=1

M {ξi ∈ Bi }

for any Borel sets B1, B2, . . . , Bn .

Definition 4 (Liu 2007) The uncertainty distribution � of
an uncertain variable ξ is defined by

�(x) = M{ξ ≤ x} (2)

for any real number x (Fig. 1).

Definition 5 (Liu 2007) The expected value of an uncertain
variable ξ is defined by

E[ξ ] =
∫ +∞

0
M{ξ ≥ x}dx −

∫ 0

−∞
M{ξ ≤ x}dx

provided that at least one of the two integrals is finite.

Example 1 An uncertain variable ξ is called zigzag if it has
a zigzag uncertainty distribution

�(x) =

⎧⎪⎪⎨⎪⎪⎩
0, if x < a
(x − a)/2(b − a), if a ≤ x < b
(x + c − 2b)/2(c − b), if b ≤ x < c
1, if x ≥ c

(3)

denoted by Z(a, b, c) where a, b, c are real numbers with
a < b < c.

Definition 6 (Liu 2010) An uncertainty distribution � of an
uncertain variable ξ is said to be regular if its inverse function
�−1(α) exists and is unique for each α ∈ (0,1). In this case,
the inverse function �−1(α) is called the inverse uncertainty
distribution of ξ .

Example 2 The inverse uncertainty distribution of a zigzag
uncertain variable Z(a, b, c) is

�−1(α) =
{

(1 − 2α)a + 2αb, if α < 0.5
(2 − 2α)b + (2α − 1)c, if α ≥ 0.5.

Fig. 2 Inverse zigzag uncertainty distribution

Theorem 1 (Liu 2010) Let ξ1, ξ2, . . . , ξn be independent
uncertain variables with regular uncertainty distributions
�1,�2, . . . , �n, respectively. If f is a strictly increasing
function, then

ξ = f (ξ1, ξ2, . . . , ξn) (4)

is an uncertain variable with inverse uncertainty distribution
(Fig. 2)

�−1 = f (�−1
1 (α),�−1

2 (α), . . . , �−1
n (α)). (5)

Example 3 Let ξ be an uncertain variable with regular uncer-
tainty distribution �. Since f (x) = ax + b is a strictly
increasing function for any constants a > 0 and b, the inverse
uncertainty distribution of aξ + b is

�−1(α) = a�−1(α) + b. (6)

Example 4 Let ξ1, ξ2, . . . , ξn be independent uncertain vari-
ables with regular uncertainty distributions �1,�2, . . . , �n ,
respectively. Since

f (x1, x2, . . . , xn) = x1 + x2 + · · · + xn

is a strictly increasing function, the sum

ξ = ξ1 + ξ2 + · · · + ξn (7)

is an uncertain variable with inverse uncertainty distribution

�−1(α) = �−1
1 (α) + �−1

2 (α) + · · · + �−1
n (α). (8)

Theorem 2 (Liu 2010) Assume that the constraint function
g(x, ξ1, ξ2, . . . , ξn) strictly increases with respect to ξ1, ξ2,

. . . , ξk and strictly decreases with respect to ξk+1, ξk+2, . . . ,

ξn. If ξ1, ξ2, . . . , ξn are independent uncertain variables with
uncertainty distributions �1,�2, . . . , �n, respectively, then
the chance constraint

M {g(x, ξ1, ξ2, . . . , ξn) ≤ 0} ≥ α (9)

holds if and only if

g(x,�−1
1 (α), . . . , �−1

k (α),�−1
k+1(1 − α), . . . , �−1

n

(1 − α)) ≤ 0. (10)
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3 Uncertain DEA model

This section will introduce an uncertain DEA model pro-
posed by Wen et al. (2014). The symbols and notations are
given as follows:

DMUi : the i th DMU, i = 1, 2, . . . , n;
DMU0: the target DMU;
x̃k = (̃xk1, x̃k2, . . . , x̃kp): the uncertain inputs vector of

DMUk , k = 1, 2, . . . , n;
�ki (x): the uncertainty distribution of

x̃ki , k = 1, 2, . . . , n, i = 1, 2,

. . . , p;
x̃0 = (̃x01, x̃02, . . . , x̃0p): the inputs vector of the target

DMU0;
�0i (x): the uncertainty distribution of

x̃0i , i = 1, 2, . . . , p;
ỹk = (ỹk1, ỹk2, . . . , ỹkq): the uncertain output vector of

DMUk , k = 1, 2, . . . , n;
�k j (x): the uncertainty distribution of

ỹk j , k = 1, 2, . . . , n, j = 1, 2,

. . . , q;
ỹ0 = (ỹ01, ỹ02, . . . , ỹ0q): the outputs vector of the target

DMU0;
�0 j (x): the uncertainty distribution of

ỹ0 j , j = 1, 2, . . . , q .

The model Wen et al. (2014) is given as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
p∑

i=1
s−

i +
q∑

j=1
s+

j

subject to :

M

{
n∑

k=1
x̃kiλk ≤ x̃0i − s−

i

}
≥ α, i = 1, 2, . . . , p

M

{
n∑

k=1
ỹk jλk ≥ ỹ0 j + s+

j

}
≥ α, j = 1, 2, . . . , q

n∑
k=1

λk = 1

λk ≥ 0, k = 1, 2, . . . , n
s−

i ≥ 0, i = 1, 2, . . . , p
s+

j ≥ 0, j = 1, 2, . . . , q

(11)

in which M is the uncertainty measure introduced in Sect. 2.
The objective of the model is to maximize the total slacks in
inputs and outputs subject to some chance constraints.

Definition 7 (Wen et al. 2014, α-efficiency) DMU0 is α-
efficient if s−∗

i (α) and s+∗
j (α) are zero for i = 1, 2, . . . , p

and j = 1, 2, . . . , q , where s−∗
i (α) and s+∗

j (α) are optimal
solutions of (11).

This definition aligns more closely with additive-efficiency
definition. However, it differs in that uncertain measure is
involved. For instance, as determined by the choice of α,

there is a risk that DMU0 will not be efficient even when the
condition of Definition 7 is satisfied.

4 Stable regions of inefficient DMUs

This section will give some theories, based on which the sta-
ble regions of the inefficient DMUs evaluated by an uncertain
DEA model (11) can be obtained.

Theorem 3 If DMU0 is α-inefficient, then the optimal solu-
tion satisfying λ∗

0 = 0.

Proof We assume that the evaluated target is DMU1. That is,
we should prove λ1 = 0. For a fixed α, suppose the optimal
solution is (λ∗, s−∗, s+∗) and the optimal objective value is∑p

i=1 s−∗
i +∑q

j=1 s+∗
j . If λ∗

1 = 0, then the Theorem has been
proved. Otherwise, let λ1 > 0. Since DMU1 is inefficient,
there exists at least one s−∗

i > 0 or s+∗
j > 0, i = 1, 2, . . . , p,

j = 1, 2, . . . , q. Without loss of generality, we assume that
s−∗

1 > 0. If λ∗
1 = 1, then M

{
x̃11 ≤ x̃11 − s−∗

1

} = 0. The
contradiction implies that λ∗

1 �= 1. That is, 0 < λ∗
1 < 1. Then

it can be obtained that

M

{
n∑

k=1

x̃kiλ
∗
k ≤ x̃1i − s−∗

i

}

= M

{
n∑

k=2

x̃kiλ
∗
k ≤ (1 − λ∗

1 )̃x1i − s−∗
i

}

= M

⎧⎪⎪⎨⎪⎪⎩
n∑

k=2
x̃kiλ

∗
k

1 − λ∗
1

≤ x̃1i − s−∗
i

(1 − λ∗
1)

⎫⎪⎪⎬⎪⎪⎭
≥ α

for all i = 1, 2, . . . , p. Similarly, we can get

M

{
n∑

k=1

ỹk jλ
∗
k ≥ ỹ1 j + s+∗

j

}

= M

⎧⎪⎪⎨⎪⎪⎩
n∑

k=2
ỹk jλ

∗
k

1 − λ∗
1

≥ ỹ1 j + s+∗
j

(1 − λ∗
1)

⎫⎪⎪⎬⎪⎪⎭
≥ α

for all j = 1, 2, . . . , q. Since

∑n
k=2 λ∗

k

1 − λ∗
1

= 1,(
0,

λ∗
2∑n

k=2 λ∗
k
,

λ∗
3∑n

k=2 λ∗
k
, . . . ,

λ∗
n∑n

k=2 λ∗
k

)
is a feasible solu-

tion. Then the objective value is
1

1 − λ∗
1

(∑p

i=1
s−∗

i
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+
∑q

j=1
s+∗

j

)
>
∑p

i=1
s−∗

i +
∑q

j=1
s+∗

j , since 0 < λ∗
1 <

1, which leads to a contradiction with the assumption. Thus
λ∗

1 = 0. The theorem is proved.

Theorem 4 If a DMU with (̃x0, ỹ0) is inefficient after eval-
uating by model (11), the new DMU with (x̂0, ŷ0) = (x̃0 −
s−∗, ỹ0 + s+∗) is α-efficient, in which s−∗ and s+∗ are opti-
mal solutions of (11).

Proof The efficiency of (̂x0, ŷ0) is evaluated by solving the
problem below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
p∑

i=1
s−

i +
q∑

j=1
s+

j

subject to :

M

{
n∑

k=1,k �=0
x̃kiλk + x̂0iλ0 ≤ x̂0i − s−

i

}
≥ α, i = 1, 2 . . . , p

M

{
n∑

k=1,k �=0
ỹk jλk + ŷ0 jλ0 ≥ ŷ0 j + s+

j

}
≥ α, j = 1, 2, . . . , q

n∑
k=1

λk = 1

λk ≥ 0, k = 1, 2, . . . , n
s−

i ≥ 0, i = 1, 2, . . . , p
s+

j ≥ 0, j = 1, 2 . . . , q.

(12)

Let an optimal solution be (̂λ, ŝ+, ŝ−). Suppose the DMU
with (̂x0, ŷ0) is inefficient, then λ0 = 0 can be got by Theo-
rem 3. By inserting the formula (̂x0, ŷ0) = (̃x0 − s−∗, ỹ0 +
s+∗) into constraints, we have

M

⎧⎨⎩
n∑

k=1,k �=0

x̃ki λ̂k ≤ x̃0i − ŝ−
i − s−∗

i

⎫⎬⎭ ≥ α,

i = 1, 2 . . . , p,

M

⎧⎨⎩
n∑

k=1,k �=0

ỹk j λ̂k ≥ ỹ0 j + ŝ+
j + s+∗

j

⎫⎬⎭ ≥ α,

j = 1, 2, . . . , q.

Now, we can also write the constraints as

M

⎧⎨⎩
n∑

k=1,k �=0

x̃ki λ̂k ≤ x̃0i − s̃−
i

⎫⎬⎭ ≥ α, i = 1, 2 . . . , p,

M

⎧⎨⎩
n∑

k=1,k �=0

ỹk j λ̂k ≥ ỹ0 j + s̃+
j

⎫⎬⎭ ≥ α, j = 1, 2, . . . , q

where s̃+ = ŝ+ + s+∗ ≥ 0 and s̃− = ŝ− + s−∗ ≥ 0.
Furthermore, we have

p∑
i=1

s̃−
i +

q∑
j=1

s̃+
j =

( p∑
i=1

ŝ−
i + s−∗

i

)
+
⎛⎝ q∑

j=1

ŝ+
j + s+∗

j

⎞⎠
≤

p∑
i=1

s−∗
i

q∑
j=1

s+∗
j

since these constraints are a feasible solution for the model
(11) and

∑p
i=1 s−∗

i +∑q
j=1 s+∗

j is maximal. It follows that

we have
∑p

i=1 ŝ−
i + ∑q

j=1 ŝ+
j = 0 which implies that all

components ŝ−
i and ŝ+

j are zero. Hence, fuzzy efficiency is
achieved as claimed.

5 Stable regions of efficient DMUs

This section will give some stability analysis to the efficient
DMUs evaluated by the uncertain DEA model (11). To get
the efficient radius of the efficient DMUs, we will give the
following model:



M. Wen et al.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
p∑

i=1
t+i +

q∑
j=1

t−j
subject to :

M

{
n∑

k=1,k �=0
x̃kiλk ≤ x̃0i + t+i

}
≥ α, i = 1, 2, . . . , p

M

{
n∑

k=1,,k �=0
ỹk jλk ≥ ỹ0 j − t−j

}
≥ α, j = 1, 2, . . . , q

n∑
k=1

λk = 1

λk ≥ 0, k = 1, 2, . . . , n
t+i ≥ 0, i = 1, 2, . . . , p
t−j ≥ 0, j = 1, 2, . . . , q.

(13)

Theorem 5 For a fixed α, the efficient DMU0 stays efficient
if (̂x0, ŷ0) = (̃x0 + t+∗, ỹ0 − t−∗), where t+∗ and t−∗ are
optimal solutions of (13).

Proof Consider the following DEA model for evaluating the
relative efficiency of the adjusted DMU0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
p∑

i=1
s−

i +
q∑

j=1
s+

j

subject to :

M

{
n∑

k=1,k �=0
x̃kiλk + (̃x0i + t+∗

i )λ0 ≤ (̃x0i + t+∗
i ) − s−

i

}
≥ α, i = 1, 2, . . . , p

M

{
n∑

k=1,k �=0
ỹk jλk + (ỹ0 j − t−∗

j )λ0 ≥ (ỹ0 j − t−∗
j ) + s+

j

}
≥ α, j = 1, 2, . . . , q

n∑
k=1

λk = 1

λk ≥ 0, k = 1, 2, . . . , n
s−

i ≥ 0, i = 1, 2, . . . , p
s+

j ≥ 0, j = 1, 2, . . . , q.

(14)

Let the optimal solution be (λ∗
j , λ

∗
0, s−∗, s+∗) and assume

that the DMU0 is inefficient. From Theorem 3, we get λ∗
0 = 0.

Then model (14) has the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
p∑

i=1
s−

i +
q∑

j=1
s+

j

subject to :

M

{
n∑

k=1,k �=0
x̃kiλk ≤ x̃0i + (t+∗

i − s−
i )

}
≥ α, i = 1, 2, . . . , p

M

{
n∑

k=1,k �=0
ỹk jλk ≥ ỹ0 j − (t−∗

j − s+
j )

}
≥ α, j = 1, 2, . . . , q

n∑
k=1

λk = 1

λk ≥ 0, k = 1, 2, . . . , n
s−

i ≥ 0, i = 1, 2, . . . , p
s+

j ≥ 0, j = 1, 2, . . . , q

(15)
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whose optimal solution is a feasible solution of model (13).
Hence, t+∗

i − s−∗
i ≥ t+∗

i and t−∗
j − s+∗

j ≥ t−∗
j , which means

that s−∗
i = 0 and s+∗

j , i = 1, 2, . . . , p, j = 1, 2, . . . , q.
This leads to a contradiction with the assumption.

6 Computation of stable regions

The above two sections have given some theory analysis to
stable regions, which is too complex to use conveniently in
practice. Thus, this section will give some equivalent deter-
ministic models to simplify the computation process.

In Wen et al. (2014), the uncertain model (11) has been
proved to be equal to the following model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
p∑

i=1
s−

i +
q∑

j=1
s+

j

subject to :
n∑

k=1,k �=0
λk�

−1
ki (α) + λ0�

−1
0i (1 − α) ≤ �−1

0i (1 − α) − s−
i , i = 1, 2, . . . , p

n∑
k=1,k �=0

λk�
−1
k j (1 − α) + λ0�

−1
0 j (α) ≥ �−1

0 j (α) + s+
j , j = 1, 2, . . . , q

n∑
k=1

λk = 1

λk ≥ 0, k = 1, 2, . . . , n
s−

i ≥ 0, i = 1, 2 . . . , p
s+

j ≥ 0, j = 1, 2, . . . , q.

(16)

Similarly, it can be proved that the uncertain model (13)
is equivalent to the following deterministic model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
p∑

i=1
t+i +

q∑
j=1

t−j
subject to :

n∑
k=1,k �=0

λk�
−1
ki (α) ≤ �−1

0i (1 − α) + t+i , i = 1, 2, . . . , p

n∑
k=1,k �=0

λk�
−1
k j (1 − α) ≥ �−1

0 j (α) − t−j , j = 1, 2, . . . , q

n∑
k=1

λk = 1

λk ≥ 0, k = 1, 2, . . . , n
t+i ≥ 0, i = 1, 2, . . . , p
t−j ≥ 0, j = 1, 2, . . . , q.

(17)

From the above analysis, the ranges of inputs and outputs
and radius of stability of DMU0 are identified as follows:

1. If DMU0 is inefficient by solving model (16), then the
inefficient region is (̃x0 − s−∗, ỹ0 + s+∗), where s−∗ and
s+∗ are optimal solutions of (16).

2. If DMU0 is efficient by solving model (16), then we use
model (17) to account for the efficient radius. The effi-
cient region is (̃x0 + t+∗, ỹ0 − t−∗), where t+∗ and t−∗
are optimal solutions of (17).

7 A numerical example

This numerical example is presented to give an illustration
of the sensitivity and stability analysis. Table 1 provides the
information of the DMUs. There are two uncertain inputs and
two uncertain outputs which are all zigzag uncertain variables
denoted by Z(a, b, c). In this example, we assume that α ≥
0.5. Then we can get that the inverse uncertainty distribution

of a zigzag uncertain variable Z(a, b, c) is �−1(α) = (2 −
2α)b + (2α − 1)c.

As an example, assume the evaluating target to be DMU1.
Then the uncertain DEA model (11) has the following
form:
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Table 1 DMUs with two zigzag uncertain inputs and two zigzag uncertain outputs

DMUi 1 2 3 4 5

Input 1 Z(3.5, 4.0, 4.5) Z(2.9, 2.9, 2.9) Z(4.4, 4.9, 5.4) Z(3.4, 4.1, 4.8) Z(5.9, 6.5, 7.1)

Input 2 Z(2.9, 3.1, 3.3) Z(1.4, 1.5, 1.6) Z(3.2, 3.6, 4.0) Z(2.1, 2.3, 2.5) Z(3.6, 4.1, 4.6)

Output 1 Z(2.4, 2.6, 2.8) Z(2.2, 2.2, 2.2) Z(2.7, 3.2, 3.7) Z(2.5, 2.9, 3.3) Z(4.4, 5.1, 5.8)

Output 2 Z(3.8, 4.1, 4.4) Z(3.3, 3.5, 3.7) Z(4.3, 5.1, 5.9) Z(5.5, 5.7, 5.9) Z(6.5, 7.4, 8.3)

Table 2 Evaluating the results
with α = 0.6 DMUs (λ∗

1, λ
∗
2, λ

∗
3, λ

∗
4, λ

∗
5) (s−∗

1 , s−∗
2 , s+∗

1 , s+∗
2 ) The evaluating result

DMU1 (0, 0.25, 0, 0.75, 0) (0, 0.93, 0.02, 0.94) Inefficiency

DMU2 (0, 1, 0, 0, 0) (0, 0, 0, 0) Efficiency

DMU3 (0, 0, 0, 0.78, 0.22) (0.03, 0.76, 0, 0.75) Inefficiency

DMU4 (0, 0, 0, 1, 0) (0, 0, 0, 0) Efficiency

DMU5 (0, 0, 0, 0, 1) (0, 0, 0, 0) Efficiency

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max s−
1 + s−

2 + s+
1 + s+

2
subject to :
λ1[(1 − 2α) × 3.5 + (1 − 2α) × 4] + λ2[(2 − 2α) × 2.9 + (2α − 1) × 2.9]

+λ3[(2 − 2α) × 4.9 + (2α − 1) × 5.4] + λ4[(2 − 2α) × 4.1 + (2α − 1) × 4.8]
+λ5[(2 − 2α) × 6.5 + (2α − 1) × 7.1] ≤ (1 − 2α) × 3.5 + (1 − 2α) × 4 − s−

1
λ1[(1 − 2α) × 2.9 + (1 − 2α) × 3.1] + λ2[(2 − 2α) × 1.5 + (2α − 1) × 1.6]

+λ3[(2 − 2α) × 3.6 + (2α − 1) × 4] + λ4[(2 − 2α) × 2.3 + (2α − 1) × 2.5]
+λ5[(2 − 2α) × 4.1 + (2α − 1) × 4.6] ≤ (1 − 2α) × 2.9 + (1 − 2α) × 3.1 − s−

2
λ1[(2 − 2α) × 2.6 + (2α − 1) × 2.8] + λ2[(1 − 2α) × 2.2 + (1 − 2α) × 2.2]

+λ3[(1 − 2α) × 2.7 + (1 − 2α) × 3.2] + λ4[(1 − 2α) × 2.5 + (1 − 2α) × 2.9]
+λ5[(1 − 2α) × 4.4 + (1 − 2α) × 5.1] ≥ (2 − 2α) × 2.6 + (2α − 1) × 2.8 + s+

1
λ1[(2 − 2α) × 4.1 + (2α − 1) × 4.4] + λ2[(1 − 2α) × 3.3 + (1 − 2α) × 3.5]

+λ3[(1 − 2α) × 4.3 + (1 − 2α) × 5.1] + λ4[(1 − 2α) × 5.5 + (1 − 2α) × 5.7]
+λ5[(1 − 2α) × 6.5 + (1 − 2α) × 7.4] ≥ (2 − 2α) × 4.1 + (2α − 1) × 4.4 + s+

2
5∑

k=1
λk = 1

λk ≥ 0, k = 1, 2, . . . , 5
s−

1 ≥ 0, s−
2 ≥ 0,

s+
1 ≥ 0, s+

2 ≥ 0.

(18)

When we set α = 0.6, the results evaluated by model (18)
are shown in Table 2. The results can be interpreted in the
following way: DMU1 and DMU3 are inefficient, whereas
DMU2, DMU4 and DMU5 are efficient.
Stable regions of inefficient DMUs For DMU1 and DMU3, we
will give their stable regions according to Theory 4. Table 3
reports the sensitivity analysis results for DMU1 and DMU3.
In Table 3, the columns 2 and 3 report lower bounds of vari-
ation ranges of inputs and the columns 4 and 5 are upper
bounds of variation ranges of outputs. For instance, DMU1

stays inefficient when (̂x11, x̂12, ŷ11, ŷ12) = (̃x11, x̃12 −
rx2, ỹ11 + ry1, ỹ12 + ry2), in which 0 ≤ rx2 < 0.93,
0 ≤ ry1 < 0.02 and 0 ≤ ry2 < 0.94.

Table 4 shows the lower bounds of input 1 and input 2
for DMU1 and DMU3, and the upper bounds of outputs are
shown in Table 5. For instance, input 2 in DMU1 reduces
to Z(2.1, 2.3, 2.5) from Z(2.9, 3.1, 3.3), and other input
and outputs remain the same. Since Z(2.1, 2.3, 2.5) has not
exceeded the lower bound Z(1.97, 2.17, 3.37), it remains

Table 3 Sensitivity analysis results for DMU1 and DMU3

DMUs s−∗
1 s−∗

2 s+∗
1 s+∗

2

DMU1 0 0.93 0.02 0.94

DMU3 0.03 0.76 0.00 0.75
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Table 4 Lower bounds of inputs for DMU1 and DMU3

DMUs Input 1 Input 2

DMU1 Z(3.5, 4.0, 4.5) Z(1.97, 2.17, 3.37)

DMU3 Z(4.37, 4.87, 5.37) Z(2.44, 2.84, 3.24)

Table 5 Upper bounds of outputs for DMU1 and DMU3

DMUs Output 1 Output 2

DMU1 Z(2.42, 2.62, 2.82) Z(4.74, 5.04, 5.34)

DMU3 Z(2.7, 3.2, 3.7) Z(5.05, 5.85, 6.65)

Table 6 Sensitivity analysis results for DMU2, DMU4 and DMU5

DMUs t+∗
1 t+∗

2 t−∗
1 t−∗

2

DMU2 0 0.23 0.16 0.00

DMU4 0 0.02 0.00 1.21

DMU5 0.00 0.00 3.11 2.06

Table 7 Upper bounds of inputs for DMU2, DMU4 and DMU5

DMUs Input 1 Input 2

DMU2 Z(2.9, 2.9, 2.9) Z(1.63, 1.73, 1.83)

DMU4 Z(3.4, 4.1, 4.8) Z(2.12, 2.32, 2.52)

DMU5 Z(5.9, 6.5, 7.1) Z(3.6, 4.1, 4.6)

inefficient. Let us consider DMU3 when output 2 increases
from Z(4.3, 5.1, 5.9) to Z(5.3, 6.1, 6.9). It becomes effi-
cient because the new output Z(5.3, 6.1, 6.9) has exceeded
the upper bound Z(2.44, 2.84, 3.24).

Stable regions of efficient DMUs For DMU2, DMU4 and
DMU5, we will use model (17) to get their stable regions.
Similar to model (18), the model (17) can be converted to a
similar form which is omitted here. Then we can get the sta-
ble regions shown in Table 6. Columns 2 and 3 report upper
bounds of variation ranges of inputs and columns 4 and 5 are
lower bounds of variation ranges of outputs. For instance,
DMU4 in Table 4 stays efficient when (̂x41, x̂42, ŷ41, ŷ42) =
(̃x41, x̃42 +rx2, ỹ41, ỹ42 −ry2), in which 0 ≤ rx2 ≤ 0.02 and
0 ≤ ry2 ≤ 1.21.

Table 7 shows the upper bounds of inputs for DMU2,
DMU4 and DMU5, and the lower bounds of outputs are
shown in Table 8. For instance, input 2 in DMU2 increases
toZ(1.82, 1.92, 2.02) fromZ(1.4, 1.5, 1.6), and other input
and outputs remain the same. Since Z(1.82, 1.92, 2.02) has
exceeded the upper bound Z(1.63, 1.73, 1.83), it becomes
inefficient. Let us consider DMU5 when output 2 decreases
from Z(6.5, 7.4, 8.3) to Z(4.76, 5.66, 6.56). It remains effi-
cient because the new output Z(4.76, 5.66, 6.56) has not
exceeded the lower bound Z(4.44, 5.34, 6.24).

Table 8 Lower bounds of outputs for DMU2, DMU4 and DMU5

DMUs Output 1 Output 2

DMU2 Z(2.04, 2.04, 2.04) Z(3.3, 3.5, 3.7)

DMU4 Z(2.5, 2.9, 3.3) Z(4.29, 4.49, 4.69)

DMU5 Z(1.29, 1.99, 2.69) Z(4.44, 5.34, 6.24)

8 Conclusion

This paper mainly gave a sensitivity and stability analysis of
the additive model for the data envelopment analysis with
uncertain inputs and outputs. Some theories based on uncer-
tain additive model, as well as the stable regions of all the
DMUs were obtained. To use it conveniently in practice,
some computation methods of the stable regions were given.
Finally, the sensitivity and stability of the uncertain additive
model were illustrated through a numerical example.

Several further studies should be considered. For one
thing, as introduced in the introduction section, we will try
to apply the cognitive approach to DEA. The uncertain input
and output data can be processed by cognitive analysis in
advance, and then the new deterministic data may be eval-
uated by the DEA method. In addition, we will apply the
uncertain DEA to evaluate the material support plans in sup-
port systems.
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Abstract: Level of repair analysis (LORA) is an important method
of maintenance decision for establishing systems of operation and
maintenance in the equipment development period. Currently, the
research on equipment of repair level focuses on economic analy-
sis models which are used to optimize costs and rarely considers
the maintenance time required by the implementation of the main-
tenance program. In fact, as to the system requiring high mission
complete success, the maintenance time is an important factor
which has a great in uence on the availability of equipment sys-
tems. Considering the relationship between the maintenance time
and the spares stocks level, it is obvious that there are contra-
dictions between the maintenance time and the cost. In order to
balance these two factors, it is necessary to build an optimization
LORA model. To this end, the maintenance time representing per-
formance characteristic is introduced, and on the basis of spares
stocks which is traditionally regarded as a decision variable, a de-
cision variable of repair level is added, and a multi-echelon multi-
indenture (MEMI) optimization LORA model is built which takes the
best cost-effectiveness ratio as the criterion, the expected num-
ber of backorder (EBO) as the objective function and the cost as
the constraint. Besides, the paper designs a convex programming
algorithm of multi-variable for the optimization model, provides
solutions to the non-convex objective function and methods for
improving the ef ciency of the algorithm. The method provided in
this paper is proved to be credible and effective according to the
numerical example and the simulation result.

Keywords: level of repair, spares, convex optimization, multi-
echelon multi-indenture (MEMI).
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1. Introduction

As we all know, equipment such as aircraft is expensive
and technically complex, with a high downtime cost. Be-
fore the equipment is deployed, several tactical level de-
cisions concerning its corrective maintenance need to be
made: (i) which components to repair upon failure and
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which to discard, (ii) where to perform the repair, (iii) the
amount of spares to stock at each site in the repair network.
These decisions should be solved so that a target avail-
ability of the installed base is achieved against the lowest
cost. Generally, the rst two decisions are taken explicitly
through level of repair analysis (LORA) and the third deci-
sion can be solved by spares stocks through general multi-
echelon technique for recoverable item control (METRIC)
type methods.

LORA is to decide the repair level of the product of
downtime as soon as possible caused by maintenance with
certain cost constraints in order to improve system avail-
ability and reduce maintenance cost as much as possible.
Generally, LORA is carried out in the sequence of non-
economic analysis and then economic analysis to identify
all the objects’ repair level. There are many qualitative
constraints in the non-economic analysis, such as moti-
lity requirements of deployment, restricts of current sup-
port systems, security requirements, special transporta-
tion requirements, practicability of repair technique, con-
dentiality constraints, and personnel and technical levels.

However, the repair level of some products cannot be iden-
ti ed only by these qualitative constraint conditions in the
product detailed design phase, that is to say, there can be
either lack of these products’ constraints or constraints ex-
isting in several repair levels. For reasons outlined above,
additional quantitative methods are needed, like the eco-
nomic analysis method proposed early [1,2], which decide
the repair level of products mainly by comparing mainte-
nance costs of spares, personnel, materials, support equip-
ment and facilities, and training in different repair levels.
LORA needs to consider many in uence factors, but a ma-
jority of the in uence factors are used in the non-economic
analysis method, so it is not necessary to consider all fac-
tors in the optimization modeling. At the beginning of the
product design phase, too much data really cannot be ob-
tained. However, the engineering background of this pa-
per is in the product detailed design phase, and the input
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data involved in the proposed model, including component
failure rate, repair time, transport time, spare unit cost and
maintenance resource cost except spares, can totally be ob-
tained by design and analysis methods of reliability and
maintainability in the detailed design phase. For example,
the component failure rate can be output from reliability
prediction and allocation, the repair time can be output
from maintainability prediction and allocation, the spare
unit cost and maintenance resource cost except spares can
be acquired from support resources planning and cost anal-
ysis, and the transport time can be output from early eld-
ing analysis. This paper aims at the products whose repair
level cannot be decided by qualitative analysis and takes
the quantitative analysis and optimization to obtain the op-
timal repair level.

Generally, the quantitative analysis, namely economic
analysis mentioned above, is only aimed at repair lev-
els without considering several stations in the same level.
In the support organization of multi-echelon multi-station,
spare stock analysis is also to reduce maintenance down-
time when failures occur and a certain amount of spare
stock allocation is needed in each station. However,
according to the overall target, there is a restrictive re-
lation between the repair level and the spare stock. On
the premise of the same amount of spares in different re-
pair levels, repairing failure parts in lower stations can
cause shorter maintenance downtime but higher mainte-
nance cost, since for maintenance of a certain product,
the amount of resources needed to be allocated in upper
stations is much smaller than the total of sub-stations un-
der the condition that an upper station supports many sub-
stations. However, under certain cost constraints, the spare
allocation will be reduced thus the maintenance waiting
time will be increased. It shows that respective optimiza-
tions for the repair level and spares will reduce the optimal
effectiveness respectively. Only by establishing a joint op-
timal model with considerations of transferring and cou-
pling relations of spare demands in the support organiza-
tion of multi-echelon multi-station to synthetically balance
the restrictive degree of the repair level and the spare al-
location, can the global optimal maintenance plan be rea-
lized.

Current researches on optimal models of LORA are fo-
cused on repair levels of products that cannot be identi ed
by qualitative factors, and take the maintenance cost as the
optimal object to identify the repair levels of these prod-
ucts. And prior researches mainly optimize the repair level
and stock allocation respectively without considering the
interaction between these two optimal issues.

Barros [3] proposed the rst multi-echelon multi-
indenture (MEMI) LORA model. Barros assumes that the
same decisions are taken at all locations at one echelon

level and all components at a certain indenture level re-
quire the same resource and that the resources are in nite
and she models the problem as an integer linear program-
ming model which she solves by using Cplex. Barros and
Riley [4] used the same model as Barros did and solved
it by using a branch-and-branch approach. Saranga and
Dinesh Kumar [5] made the same assumptions as Barros
[3], except that each component requires its own unique
resources. They solved the model by using a genetic algo-
rithm. Basten et al. [6] generalized the two aforementioned
models by allowing for components requiring multiple re-
sources and multiple components requiring the same re-
source. Finally, Basten et al. [7] generalized the model of
[6] by allowing for different decisions at various locations
at one echelon level. They show that the LORA problem
can be modeled ef ciently as a generalized minimum cost
ow model. Basten et al. [8] proposed a number of ex-

tensions to the model of [7]. Brick and Uchoa [9] also
used similar assumptions as those in [7], but considered
resources have a maximum capacity and assumed two in-
denture levels.

In the literature about spares, the METRIC type mo-
dels are the most clastic. Sherbrook [10] developed the
METRIC model, which is the basis for a huge stream
of METRIC type models. The goal in these models is
to nd the most cost effective allocation of spares in
a network. Muckstadt [11] extended the work of Sher-
brooke (two-echelon, single-indenture) by allowing for
two indenture levels, leading to the so-called MOD-
METRIC model. Simon [12] considered the two-echelon,
single-indenture, single-item problem, which is later ex-
tended to the general multi-echelon problem by Kruse
[13]. Graves [14] proposed a more accurate approximation
for the two-echelon, single-indenture problem, the VARI-
METRIC model, which Sherbrooke [15] extended to the
two-indenture level. Axsater [16] provided an exact eva-
luation and enumeration but with penalty costs instead of
a service level constraint. Rustenburg et al. [17] gave an
exact evaluation for the general MEMI problem. Kim [18]
proposed an algorithm for a multi-echelon repairable item
stocks system with depot spares and general repair time
distribution.

Some researchers solve the problem of LORA and
spares stocks jointly. Alfredsson [19] rstly proposed
a two-echelon, single-indenture model joint LORA and
spares stocks. He assumes it is required at the same lo-
cation that each component requires one resource and all
components require the same resource. Basten et al. [20]
proposed the same model as that in [19], but they al-
lowed for more general component-resource and compo-
nents may share resources.

However, in the existing literature about spares inven-
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tory and LORA, a majority of models mainly consider
how to minimize the costs, while disregard the mainte-
nance time. Although Alfredsson [19] considered the sys-
tem downtime, he omitted the spares waiting time which
is the major part of the downtime. In this paper, we take
a research on the joint optimization of LORA and spares
stocks by considering the maintenance time resulting from
maintenance action. In the spares inventory, higher main-
tenance time will lead a larger number of spares to be
stocked to achieve the same availability. Availability is de-
ned by the up time (mean time between failure, MTBF)

and the down time (mean time due to spares, maintenance
and other delays resulting from maintenance action, MDT)
[21]. As is known, availability is an important factor in
equipment systems, which is signi cantly in uenced by
the maintenance time. Since MTBF is a reliability para-
meter related to the equipment’s own design away from
the in uence of the optimization, MDT is the main factor
to affect the availability of the equipment. Therefore, MDT
can represent the system effectiveness instead of the avai-
lability of the equipment in our optimization model. Dis-
regarding human factors or management delay in main-
tenance, MDT mainly means the turn-around time (TAT)
which includes pure repair time, transportation time and
spares waiting time. The pure repair time is the execu-
tion time depending on the speci c steps to nish the job
when all resources are ready, and it is generally a constant
value plus the transportation time. Shortening the pure re-
pair time or other resources waiting time generally has no
obvious effect on the maintenance time, therefore, in the
optimization, by shortening the spares waiting time, we
can achieve a target availability of equipment systems, in
other words, the optimization goal is to shorten the spares
waiting time. According to the Little Theory, we can trans-
form the spares waiting time into the expected number of
backorder (EBO), and further we can transform the mainte-
nance time-cost balance into the EBO-cost balance. In the
model, we will take EBO as the objective function, main-
tenance cost as the constraint condition.

In Section 2, we outline our model and design a convex
programming algorithm to solve the model in Section 3. In
Section 4, we design a numerical experiment and con rm
the correctness of our algorithm by simulation. Finally, we
give some conclusions and recommendations for further
research in Section 5.

2. Model

2.1 Assumptions and notations

We use the underlying assumptions in the MEMI LORA
model:

(i) Line replaceable unit (LRU) failure time is exponen-

tial distribution;
(ii) For each component at each location, the (s − 1, s)

continuous review stocks control policy is used;
(iii) Except for spares, other maintenance resources are

always adequate;
(iv) A failure of LRU is caused by a failure in at most

one shop replaceable unit (SRU).
We index the depot-level sites by Dc (c = 1, 2, . . . , C).

Each depot-level site supports multiple intermediate-level
sites which are indexed by Ib (b = 1, 2, . . . , B). Each
intermediate-level site supports multiple organization-level
sites which are indexed by Oa (a = 1, 2, . . . , A). Let 0 de-
note the LRU and index the LRU by i (i = 1, 2, . . . , I).
Each LRU contains multiple SRUs which are indexed by
x (x = 1, 2, . . . , X).

mOa: the demand rate of the site Oa;
mL

i0: the demand rate of the LRUi at the site L(L:
Oa, Ib, Dc);

mL
ix: the demand rate of the SRUix at the site L(L:

Oa, Ib, Dc);
pOa

i1 : probability of the failure LRUi at the site Oa re-
paired at organization-level;

pOa
i2 : probability of the failure LRUi at the site Oa de-

livered to intermediate-level to repair;
pOa

i3 : probability of the failure LRUi at the site Oa de-
livered to depot-level to repair;

pIb
i2 : probability of the failure LRUi at the site Ib re-

paired at intermediate-level;
pIb

i3 : probability of the failure LRUi at the site Ib deli-
vered to depot-level to repair;

fOa
ix1: probability of the failure SRUix at the site Oa re-

paired at organization-level;
fOa

ix2: probability of the failure SRUix at the site Oa de-
livered to intermediate-level to repair;

fOa
ix3: probability of the failure SRUix at the site Oa de-

livered to depot-level to repair;
f Ib

ix2: probability of the failure SRUix at the site Ib re-
paired at intermediate-level;

f Ib
ix3: probability of the failure SRUix at the site Ib de-

livered to depot-level to repair;
qL
ix: probability of the failure LRUi at the site L caused

by SRUix(L: Oa, Ib, Dc);
T L

i0: repair time of the LRUi at the site L(L: Oa,

Ib, Dc);
T L

ix: repair time of the SRUix at the site L(L: Oa,

Ib, Dc);
Tw: spares waiting time of organization-level;
T L

wi0: spares waiting time of the LRUi at the site
L(L: Oa, Ib, Dc);

T L
wix: spares waiting time of the SRUix at the site

L(L: Oa, Ib, Dc);
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T DcIb
i0 : transportation time of the site Dc to the site Ib;

T DcOa
i0 : transportation time of the site Dc to the site Oa;

T IbOa
i0 : transportation time of the site Ib to the site Oa;

XL
i0: the number of the LRUi in repairing at the site

L(L: Oa, Ib, Dc);
XL

ix: the number of the SRUix in repairing at the site
L(L: Oa, Ib, Dc);

sL
i0: the stock level of the LRUi at the site L(L: Oa,

Ib, Dc);
sL

i0: the stock level of the SRUix at the site L(L: Oa,

Ib, Dc);
E[XL

i0]: the expected pipeline for the LRUi at the site
L(L: Oa, Ib, Dc);

E[XL
ix]: the expected pipeline for the SRUix at the site

L(L: Oa, Ib, Dc);
EBOOa

i : the expected LRUi backorder at the site Oa;
EBO(sL

i0|E[XL
i0]): the expected LRUi backorder at the

site L when the stock is sL
i0 and the expected pipeline is

E[XL
i0](L: Oa, Ib, Dc);

EBO(sL
ix|E[XL

ix]): the expected SRUix backorder at
the site L when the stock is sL

ix and the expected pipeline
is E[XL

ix](L: Oa, Ib, Dc).

2.2 Mathematical model

In this section, we mainly consider the three-echelon, two-
indenture support system, and based on the analysis, we
build a MEMI LORA optimization model as shown in
Fig.1.

Fig. 1 Three-echelon, two-indenture support structure

As shown in Fig. 1(a), the support organization has
three echelons, in which one depot-level site supports a
number of repair sites called intermediate-level and one
intermediate-level supports a number of repair sites called
organization-level. The product structure can be abstracted

as a two-indenture system, which is composed of multiple
LRUs consisting of a number of SRUs in series, as shown
in Fig. 1(b).

In Section 1, we have analyzed that the objective func-
tion of model is the EBO which is transformed by the
spares waiting time. Therefore, the real objective function
is the spares waiting time. Now, we deduce the relationship
between the spares waiting time and the EBO.

In the multi-indenture support organization, as we know,
the mean waiting time is expressed as

Tw =
A∑

a=1

mOaT Oa
w /

A∑
a=1

mOa. (1)

And T Oa
w can be expressed as

T Oa
w =

I(a)∑
i=1

mOa
i0 T Oa

wi0/

I(a)∑
i=1

mOa
i0 (2)

where I(a) is the number of LRUi at the site Oa. We can
get T Oa

wi0 from the Little formula:

T Oa
wi0 = EBOOa

i /mOa
i0 . (3)

Combining (1), (2) and (3), we can get

Tw =
A∑

a=1

I(a)∑
i=1

EBOOa
i /

A∑
a=1

I(a)∑
i=1

mOa
i0 . (4)

As shown in (4), when the demand rate of each
site is known, achieving the minimum possible mean
waiting time is equal to achieving minimum possi-

ble
A∑

a=1

I(a)∑
i=1

EBOOa
i , therefore, the objective function is

A∑
a=1

I(a)∑
i=1

EBOOa
i . We analyze the objective function as

shown in Fig. 2.
In Fig. 2, we present how to compute the objective func-

tion EBO. According to the Palm’s Theorem [21,22], we
can obtain the EBO formula.

EBO(sL|E[XL]) =
∞∑

x=sL+1

(x − sL)
(E[XL])x

x!
e−E[XL]

(11)
Meantime, the demand rate of spares at each site can be
computed as follows:

mOa
i0 = mOa

i00p
Oa
i1 (12)

mOa
ix = mOa

i0 qOa
ix fOa

ix1 (13)

mIb
i0 =

∑
Oa⊂Ib

mOa
i00p

Oa
i2 pIb

i2 (14)
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Fig. 2 Computing ow for MEMI objective function

mIb
ix = (mIb

i0qIb
ix +

∑
Oa⊂Ib

mOa
i0 qOa

ix fOa
ix2)f

Ib
ix2 (15)

mDc
i0 =

∑
Oa⊂Dc

mOa
i00p

Oa
i3 +

∑
Ib⊂Dc

mOa
i00p

Oa
i2 pIb

i3 (16)

mDc
ix = mDc

i0 qDc
ix +

∑
Oa⊂Dc

mOa
i0 qOa

ix fOa
ix3+

∑
Ib⊂Dc

(mIb
i0 qIb

ix +
∑

Oa⊂Ib

mOa
i0 qOa

ix fOa
ix2)f

Ib
ix3. (17)

During the optimization process, it needs to consider
two constrains conditions: cost and repair level decision
variable. As mentioned in Section 1, the costs mainly in-
clude the spares cost and the maintenance resource cost ex-
cept spares. If we de ne CS

i as the LRU total spares cost,
CR

i as the LRU total maintenance resource cost, cs
i0 as the

LRU cost, cs
ix as the SRU cost, cL

i0 as the LRU maintenance
resource cost at the site L(L: Oa, Ib, Dc), cL

ix as the SRU
maintenance resource cost at the site L(L: Oa, Ib, Dc),
and T as the support time (year), then we can get total
spares and maintenance resource costs as

Cs
i = cs

i0(
A∑

a=1

sOa
i0 +

B∑
b=1

sIb
i0 +

C∑
c=1

sDc
i0 ) +

cs
ix(

A∑
a=1

sOa
ix +

B∑
b=1

sIb
ix +

C∑
c=1

sDc
ix ) (18)

CR
i = T {

A∑
a=1

mOa
i0 cOa

i0 +
B∑

b=1

mIb
i0 cIb

i0 +
C∑

c=1

mDc
i0 cDc

i0 +

A∑
a=1

mOa
ix cOa

ix +
B∑

b=1

mIb
ixcIb

ix +
C∑

c=1

mDc
ix cDc

ix }. (19)

Here the constraint condition is

I∑
i=1

(CS
i + CR

i ) � Cm. (20)

The optimization model is used to determine the repair
level, so each variable is a 0-1 variable, where 1 means
maintenance at the site, and 0 means no maintenance at
the site. The constraint conditions of repair level decision
variables are as follows:

pOa
i1 , pOa

i2 , pOa
i3 , pIb

i2 , pIb
i3 ∈ {0, 1} (21)

pOa
i1 + pOa

i2 + pOa
i3 = 1 (22){

pIb
i2 + pIb

i3 = 1, pOa
i2 = 1

pIb
i2 + pIb

i3 = 0, else (23)

fOa
ix1, f

Oa
ix2, f

Oa
ix3, f

Ib
ix2, f

Ib
ix3 ∈ {0, 1} (24)

fOa
ix1 + fOa

ix2 + fOa
ix3 = 1, pOa

i1 = 1 (25){
f Ib

ix2 + f Ib
ix3 = 1, fOa

ix2 = 1 or pIb
i2 = 1

f Ib
ix2 + f Ib

ix3 = 0, else . (26)

We de ne
A∑

a=1

I(a)∑
i=1

EBO(sOa
i0 |E[XOa

i0 ]) as the objective

function, and we can get EBO(sOa
i0 |E[XOa

i0 ]) according
to the computing ow shown in Fig. 2. Equations (18) –
(20) as cost constraint conditions, (21) – (26) as repair level
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decision variable constraint conditions, then we can get a
MEMI LORA optimization model, as shown in (27):

min
A∑

a=1

I(a)∑
i=1

EBO(sOa
i0 |E[XOa

i0 ])

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I∑
i=1

(CS
i + CR

i ) � Cm

pOa
i1 , pOa

i2 , pOa
i3 , pIb

i2 , pIb
i3 ∈ {0, 1}, i = 1, 2, . . . , I

fOa
ix1, f

Oa
ix2, f

Oa
ix3, f

Ib
ix2, f

Ib
ix3 ∈ {0, 1},

x = 1, 2, . . . , X(i)
pOa

i1 + pOa
i2 + pOa

i3 = 1, i = 1, 2, . . . , I

fOa
ix1 + fOa

ix2 + fOa
ix3 = 1, if pOa

i1 = 1,

x = 1, 2, . . . , X(i)
pIb

i2 + pIb
i3 = 1, if pOa

i2 = 1, i = 1, 2, . . . , I

pIb
i2 + pIb

i3 = 0, if pOa
i2 = 0, i = 1, 2, . . . , I

f Ib
ix2 + f Ib

ix3 = 1, if fOa
ix2 = 1 or pIb

i2 = 1,

x = 1, 2, . . . , X(i)
f Ib

ix2 + f Ib
ix3 = 0, else, x = 1, 2, . . . , X(i)

.

(27)

3. Optimization algorithm

3.1 Analysis of objective function EBO(s, p)

Different from the objective function EBO(s) in the tradi-
tional METRIC type model, we add a repair level decision
variable p in our model, so inventories are not the only
variable in the objective function EBO(s, p). As we know,
the function EBO(s) is convex, while whether the function
EBO(s, p) is convex or not still needs further study.

Now, we use the three-echelon, single-spare support or-
ganization for the object to verify the characteristic of the
function.

Assuming there is only one site in each echelon, and the
probability that the LRU is repaired at organization-level,
intermediate-level or depot-level is p = {p1, p2, p3}, then
there are only three combinations for p: p1 = {1, 0, 0},
p2 = {0, 1, 0}, p3 = {0, 0, 1}. Assuming the spares stocks
are zero at each echelon, the EBO is equal to the quantity
demanded at each echelon, and the EBO at organization-
level is ⎧⎨

⎩
EBO(p1) = mT1
EBO(p2) = m(O2 + T2)
EBO(p3) = m(O3 + T3)

. (28)

We de ne the maintenance time of organization-level,
intermediate-level and depot-level as T1, T2, and T3 re-
spectively, and the delivery time of organization-level
to intermediate-level, and intermediate-level to depot-
level as O2, and O3 respectively. Assuming EBO(p3) >

EBO(p2) > EBO(p1), we can get

(O3 + T3) > (O2 + T2) > T1. (29)

The second difference formula EBO(p) is

Δ2EBO(p) = EBO(p3) − 2EBO(p2)+

EBO(p1) = m[O3 + T3 − 2(O2 + T2) + T1]. (30)

By adjusting the distance between sites or designing the
appropriatemaintenance time, we can make Δ2EBO(p) <

0, so EBO(p) is non-convex. According to the convex
optimization theory, EBO(s, p) needs to traverse the in-
ventories (s) and repair level (p) respectively. However,
EBO(p) is non-convex, and it will affect the application
of the convex optimization algorithm which needs to be
improved.

3.2 Algorithm

In Section 3.1, we have analyzed the objective function,
next we should improve the algorithm to make EBO(s, p)
convex. In this section, we rstly construct a convex func-
tion for non-convex function EBO(p), and then present the
whole algorithm ow.

When traversing the repair level combination of all kinds
of spares, the circulation of the repair level combination
can be inserted in the circulation of the spares type. There-
fore, if we have structured the EBO convex curve of all
kinds of spares according to the repair level decision vari-
ables before traversing the spares types, all kinds of spares
can be turned into convex optimization according to the
margin iteration of the unit cost effect. Thus, we can con-
clude that the key step of solving the non-convex function
optimization algorithm is to structure a convex function re-
spectively for non-convex function EBO(p) of all kinds of
spares.

The method of structuring convex function EBO(p)-cost
of all kinds of spares is the same as that of constructing the
EBO(s)-cost optimization curve, which enhances the unit
cost effect of the certain spare to make an optimization de-
cision. To a certain spare, there may be several repair levels
to choose. Here, we x the stocks sof EBO(s, p), and de-
cide which kind of choice can make EBO(p) minimum.
Based on this, we choose the minimum EBO(p) of re-
pair levels in each step of increasing spares stocks, and get
the optimization EBO(p)-cost convex function which is ite-
rated in gradient direction.

We construct the EBO(p)-cost curve according to the
theory of marginal analysis, and it is obvious that the curve
is convex. Using the point on the EBO(p)-cost convex
curve to make optimization analysis among all kinds of
spares, we can get the optimization curve of EBO(s, p)-
cost. The whole algorithm ow is shown in Fig. 3.
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Fig. 3 Algorithm ow diagram

3.3 Method of improving optimization algorithm
ef ciency

In the optimization model joint LORA and spares stocks,
the EBO is affected by stocks (s) and repair level (p).
Since the repair level probability p and f are 0-1 variables,
and pOa

i1 , pOa
i2 , pOa

i3 , pIb
i2 , pIb

i3 and fOa
ix1 , fOa

ix2 , fOa
ix3 , f Ib

ix2,
f Ib

ix3 can be obtained at corresponding sites, thus the num-
ber of repair level probability combinations at all sites in
organization-level can reach 2(3A+2B)(1+X). This means

that when we compute Δ, the running speed of the algo-
rithm will be affected seriously because of a large num-
ber of cycles of the EBO. However, in the algorithm iter-
ative process, when we increase a certain type of spares,
other types do not change with the increase of this type,
which means there are many cases that can be disregarded
when we compute Δ. Therefore, we list all possible com-
binations to improve the ef ciency of the algorithm in
Table 1.

Table 1 Relationship of values of the repair level probability

p fSite
No. pOa

i1 pOa
i2 pOa

i3 pIb
i2 pIb

i3 No. fOa
ix1 fOa

ix2 fOa
ix3 fIb

ix2 fIb
ix3

Organization-level 1© 1 0 0 0 0 (a) 1 0 0 0 0
1 0 0 0 0 (b) 0 1 0 1 0
1 0 0 0 0 (c) 0 1 0 0 1
1 0 0 0 0 (d) 0 0 1 0 0

Intermediate-level 2© 0 1 0 1 0 (e) 0 0 0 1 0
0 1 0 1 0 (f) 0 0 0 0 1

3© 0 1 0 0 1 (g) 0 0 0 0 0

Depot-level 4© 0 0 1 0 0 (h) 0 0 0 0 0

Different combinations of repair level probability will
lead to different EBO expressions, so it needs to compute
the objective function value of all kinds of spares at each
site when using the repair level.

Plus one LRU at each echelon site, we can get the num-
ber of combinations of each echlon site according to (5),
(6) and (7), as shown in Table 2.

Table 2 Values of p and f when plus one LRU at each site

Site p f Combinations Total
Organization-level 1© (a-d) 4X (4X + 2X + 1)A

2© (e-f) 2X

3© (g) 1
4© (h) 1

Intermediate-level 2© (e-f) 2X (2X + 1)A

3© (g) 1

Depot-level 3© (g) 1 2A

4© (h) 1

Plus one SRU at each echelon site, we can get the num-
ber of combinations of each echelon site according to (8),
(9) and (10), as shown in Table 3.

Table 3 Values of p and f when plus one SRU at each site

Site p f Combinations Total
Organization-level 1© (a-d) 4X (4X + 2X + 1)A

2© (e-f) 2X

3© (g) 1
4© (h) 1

Intermediate-level 2© (e-f) 2X (2X + 1)A

3© (g) 1

Depot-level 3© (g) 1 2A

4© (h) 1

4. Application case

Taking equipment maintenance planning as the back-
ground, we introduce how to apply the convex optimiza-
tion algorithm based on the optimization theory proposed
in this paper.

As shown in Fig.1(a), the support organization consists
of three echelons: one depot-level site (D) supports two
intermediate-level sites (I1, I2) which respectively sup-
port two organization-level sites (O1, O2, O3, O4). Each
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organization-level site supports ten systems, and these ten
systems which contain eight types of LRUs are identical at
the same site. Product structure is shown in Fig. 1(b).

(i) Input data
The uncertainty factors in the model are mainly demand

rate of spares, unit cost and maintenance time. This case
will present the in uence of these factors on the repair
level and the inventory with the simple variable method.

As shown in Table 4, the maintenance time is the only dif-
ference between LRU1 and LRU2, the unit cost is the only
difference between LRU3 and LRU4, the demand rate is
the only difference between LRU5 and LRU6, and the data
of LRU7 and LRU8 are different with the rst six LRUs.
The maintenance resource cost except spares in each re-
pair level is shown in Table 5.

Table 4 Input date of multi-site multi-type LRUs

LRU
Demand
rate/year

T Dc
i0 /year T Ib

i0 /year T Oa
i0 /year T DI

i0 /year T DO
i0 /year T IO

i0 /year
Unit cost/

thousand dollars
Costs constrain/
thousand dollars

19.58 0.020 0.038 1 0.049 0 0.011 9 0.028 4 0.011 5 5
14.85 0.020 0.038 1 0.058 9 0.011 9 0.049 1 0.012 4 5LRU1
10.36 0.020 0.036 0 0.057 5 0.012 1 0.048 8 0.021 9 5
17.43 0.020 0.036 0 0.055 5 0.012 1 0.040 4 0.024 0 5

19.58 0.020 0.033 1 0.031 0 0.011 9 0.028 4 0.011 5 5
14.85 0.020 0.033 1 0.050 8 0.011 9 0.049 1 0.012 4 5LRU2
10.36 0.020 0.027 6 0.035 6 0.012 1 0.048 8 0.021 9 5
17.43 0.020 0.027 6 0.052 6 0.012 1 0.040 4 0.024 0 5

15.06 0.020 0.030 0 0.047 6 0.011 9 0.028 4 0.011 5 4
11.39 0.020 0.030 0 0.051 0 0.011 9 0.049 1 0.012 4 4LRU3
13.50 0.020 0.023 0 0.037 6 0.012 1 0.048 8 0.021 9 4
13.52 0.020 0.023 0 0.035 9 0.012 1 0.040 4 0.024 0 4

15.06 0.020 0.030 0 0.047 6 0.011 9 0.028 4 0.011 5 5
11.39 0.020 0.030 0 0.051 0 0.011 9 0.049 1 0.012 4 5LRU4
13.50 0.020 0.023 0 0.037 6 0.012 1 0.048 8 0.021 9 5
13.52 0.020 0.023 0 0.035 9 0.012 1 0.040 4 0.024 0 5

15.38 0.020 0.035 0 0.036 9 0.011 9 0.028 4 0.011 5 6
450

19.62 0.020 0.035 0 0.059 9 0.011 9 0.049 1 0.012 4 6LRU5
18.00 0.020 0.020 1 0.056 1 0.012 1 0.048 8 0.021 9 6
11.46 0.020 0.020 1 0.042 9 0.012 1 0.040 4 0.024 0 6

15.13 0.020 0.035 0 0.036 9 0.011 9 0.028 4 0.011 5 6
11.84 0.020 0.035 0 0.059 9 0.011 9 0.049 1 0.012 4 6LRU6
13.38 0.020 0.020 1 0.056 1 0.012 1 0.048 8 0.021 9 6
13.90 0.020 0.020 1 0.042 9 0.012 1 0.040 4 0.024 0 6

12.35 0.020 0.028 1 0.058 3 0.011 9 0.028 4 0.011 5 7
11.69 0.020 0.028 1 0.040 6 0.011 9 0.049 1 0.012 4 7LRU7
11.89 0.020 0.033 0 0.043 5 0.012 1 0.048 8 0.021 9 7
17.80 0.020 0.033 0 0.050 6 0.012 1 0.040 4 0.024 0 7

15.11 0.020 0.038 6 0.043 1 0.011 9 0.028 4 0.011 5 8
18.12 0.020 0.038 6 0.054 5 0.011 9 0.049 1 0.012 4 8LRU8
12.08 0.020 0.030 7 0.056 3 0.012 1 0.048 8 0.021 9 8
11.95 0.020 0.030 7 0.039 0 0.012 1 0.040 4 0.024 0 8

Table 5 Maintenance resource cost of LRUs in each repair level
(thousand dollars)

LRU Depot D
Intermediate

I1I2

Organization
O1O2O3O4

LRU1 1.81 2.91 3.55
LRU2 1.39 2.71 3.10
LRU3 1.12 2.34 3.26
LRU4 1.83 2.92 3.38
LRU5 1.69 2.08 3.83
LRU6 1.14 2.55 3.35
LRU7 1.24 2.13 3.06
LRU8 1.08 2.49 3.51

(ii) Output
In the cost constrain of 450 thousand dollars, the total

maintenance resource cost of all LRUs is 262.82 thousand
dollars and the total spare cost is 187.18 thousand dollars,
and the optimization value of the EBO is 5.064.

In the convex optimization algorithm, according to the
principle of the highest unit cost-effectiveness, selecting
sequence of spares based on marginal analysis is shown in
Fig. 4, the Y-axis represents the type of LRU, while the
X-axis represents selecting sequence, the length of which
represents cost. The length of each segment represents unit



Linhan Guo et al.: Joint optimization of LORA and spares stocks considering corrective maintenance time

cost and the label of which respectively represents the stocking site and selecting sequence of each LRU.

Fig. 4 Selecting sequence of spares

The optimal repair level of each LRU is shown in Ta-
ble 6. Table 6(a) presents the optimal repair level of LRUs
which are respectively deployed in site O1 and site O2 un-
der the intermediate-level site I1. Table 6(b) presents the
optimal repair level of LRUs which are respectively de-
ployed in site O3 and site O4 under the intermediate-level
site I2.

Table 6(a) Optimal repair level of each LRU

Intermediate-level(I1 )
Organization-level(O1 ) Organization-level(O2 )

Failure Repair level Failure Repair level
LRU1 D LRU1 D

LRU2 O1 LRU2 D

LRU3 I1 LRU3 I1
LRU4 I1 LRU4 I1
LRU5 O1 LRU5 D

LRU6 D LRU6 D

LRU7 I1 LRU7 I1
LRU8 O1 LRU8 D

Table 6(b) Optimal repair level of each LRU

Intermediate-level(I2 )
Organization-level(O3 ) Organization-level(O4 )

Failure Repair level Failure Repair level
LRU1 D LRU1 D

LRU2 O3 LRU2 I2
LRU3 O3 LRU3 O4

LRU4 O3 LRU4 O4

LRU5 I2 LRU5 O4

LRU6 I2 LRU6 O4

LRU7 O3 LRU7 O4

LRU8 I2 LRU8 O4

The optimal stocks allocation of each LRU is shown in
Table 7.

Table 7 Stocks allocation of multi-site multi-type LRUs

Intermediate Organization
LRU Depot

I1 I2 O1(I1) O2(I1) O3(I2) O4(I2)
LRU1 1 1 0 1 1 1 1
LRU2 0 0 0 1 1 1 1
LRU3 0 0 1 1 1 0 1
LRU4 0 0 0 1 1 1 1
LRU5 0 0 0 1 1 1 1
LRU6 0 1 0 1 0 1 1
LRU7 0 0 0 1 1 1 1
LRU8 0 0 0 1 1 1 0

Fig. 5 shows the EBOi-cost optimal curve of each LRU
and the total EBO-cost optimal curve, from which we can
see the optimal EBO of eight LRUs in different total costs.
In this case, the total EBO is 5.064 under spares cost of
187.18, and the red dot on the total EBO-cost curve is the
optimal selecting dot by the marginal analysis which also
can be seen in details in Fig. 4.

In order to verify our algorithm, we simulate the model
with the optimal inventory allocation and repair level by
the SIMLOX, which is a simulation software for logistic
support systems. We take the result of the optimal inven-
tory allocation and repair level under the cost constraint of
450 provided by our algorithm as input data, and let these
forty systems carry out an identical mission for one year.
Fig. 6 presents the simulation curve, from which it can be
found that with the same input of Table 4, the mean EBO
of the forty systems carrying out the identical mission for
one year is 5.152.

(iii) Result analysis
According to the output, comparing with the results of

LRU1 and LRU2, the maintenance time affects the combi-
nation of the repair level.
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Comparing with the results of LRU3 and LRU4, the unit
cost affects the stocks allocation at each site. Comparing
with the results of LRU5 and LRU6, the demand rate of
spares affects the stocks allocation at each site. Drawing a
conclusion, from the results, we can get that the mainte-
nance time of LRU at each site can affect the combination
of the repair level, demand rate and unit cost of LRU, and
affect stocks allocation at each site. In addition, according
to the simulation result, comparing the EBO of theoreti-
cal calculation with that of the simulation, we can see that
there is only little difference. Thus, the correctness of our
algorithm can be con rmed.

Fig. 5 Optimal curve of multi-type LRUs

Fig. 6 EBO simulation

5. Conclusions and further research

In this paper, we propose a method of LORA conside-
ring the maintenance time in equipment support systems,
analyze the problem of level of repair systematically, de-
duce the LORA objective function and give the modeling
condition. Then, we provide the optimal objective func-
tion formula and constraint condition at the MEMI sup-
port organization, and build the MEMI optimization model
joint LORA and spares stocks. In addition, we analyze the
characteristics of the optimization problem, design a multi-
variable convex optimization algorithm, explain the theory
and ow of the algorithm, and provide solutions to the non-
convex objective function and methods for improving the
ef ciency of the algorithm. Finally, we con rm the correct-
ness of the proposed algorithm through a numerical exam-
ple by virtue of simulation.

The contribution of the paper is that it analyzes the re-
strictive relation of the repair level and spare stock, and the
transferring and coupling relations of the number of fail-
ures sent to repair, spares demand and spare backorders
random variables in multi-indenture product systems. This
paper introduces the maintenance time into the traditional
quantitative repair level analysis and establishes the joint
optimal model of the repair level and spare stock. Mean-
while, the support organization of multi-echelon multi-
station in the model is asymmetric which means it is more
truthful since the operation pro le and failure of systems
in all stations and the maintenance capability can be dif-
ferent. In addition, the paper designes the multi-variable
convex optimization algorithm for the model, which can
be highly effective when applied to complicated support
systems, and veri es the correctness of the algorithm and
the model by simulation.

In further research, we will consider all maintenance re-
sources in our model, build optimization models of limited
maintenance capability, and take the correlation of inter-
depot maintenance resources into account.
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Abstract. Facility location-allocation (FLA) problem has been widely studied by operational researchers due to its many practical
applications. In real life, it is usually very hard to present the customers’ demands in a precise way and thus they are regarded to
be uncertain. Since the uncertain demands can be estimated from historical data, researchers tried to describe FLA problem under
stochastic environment. Although stochastic models can cater for a variety of cases, they are not sufficient to describe many other
situations, where the probability distribution of customers’ demands may be unknown or partially known. Instead we have to
invite some domain experts to evaluate their belief degree that each event will occur. This paper will consider the capacitated FLA
problem under small sample or no-sample cases and establish an uncertain expected value model based on uncertain measure.
In order to solve this model, the simplex algorithm, Monte Carlo simulation and a genetic algorithm are integrated to produce a
hybrid intelligent algorithm. Finally, a numerical example is presented to illustrate the uncertain model and the algorithm.

Keywords: Location-allocation problem, uncertainty theory, uncertain measure, uncertain programming, genetic algorithm

1. Introduction

Facility location-allocation (FLA) problem, as one
of the most critical and strategic issues in supply-chain
design and management, exhibits a significant impact
on market share and profitability. Besides supply-chain
management, it is also widely used in practical life,
such as building an emergency service systems and
constructing a telecommunication networks, etc.
FLA problem was initially studied by Cooper [5] in

1963, which wants to decide locations of warehouses
and allocation of customers demand given the locations
and demand of customers. Since then, this problem
has received much attention from other researchers and
it has been analyzed in a number of different ways.

∗Corresponding author. Zhongfeng Qin, School of Economics
and Management Science, Beihang University, Beijing 100191,
China. E-mail: qin@buaa.edu.cn.

Hakimi [13, 14] applied it in network design as a pow-
erful tool. In 1982, Murtagh and Niwattisyawong [32]
proposed the capacitated FLA problem, which is con-
sidered as one of the most important researches in
this field, specially focusing on facilities which have
capacity constraints. Many extensions of FLA problem
were studied, Such as continuous site location problem
Jiang and Yuan [16], joint FLA problem Jayaraman
and Pirkul [15] and multi-objective FLA problem Rev-
elle and Laporte [34]. For detailed review of literature
on FLA problem, readers are referred to Klose and
Drexl [17]. Megiddo and Supowit [30] have proved
that the FLA problem is strongly NP-hard, and thus a
large amount of solution approaches for different mod-
els have been proposed in the past decades Kuenne
and Soland [18], Murray and Church [31]. A series of
heuristic algorithms have also been developed to solve
complicated FLA problems Ernst and Krishnamoorthy
[9], Gong et al. [12].

1064-1246/15/$35.00 © 2015 – IOS Press and the authors. All rights reserved



M. Wen et al. / The capacitated facility location-allocation problem under uncertain environment

A limitation of most existing studies on FLA prob-
lem is that customers’ demands are usually assumed
deterministic and therefore a linear inventory holding
cost is adopted. Without considering the uncertainty
of customers’ demands, those models usually lead to
sub-optimal in terms of total cost. In recent years, some
studies consider stochastic customers’ demands and
incorporate inventory policy into FLA problem Logen-
dran and Terrell [19], Sabri and Beamon [35], Zhou and
Liu [38, 41]. Although stochastic models can cater for a
variety of cases, they are not sufficient to describemany
other situations, where the probability distributions
of customers’ demands may be unknown or partially
known. In order to have an approximate understanding
of these cases, we usually consult the experts and obtain
their empirical data. The empirical data from experts,
like “about 100”, “more than 200”, etc., can be regarded
as fuzzy variable initialized by Zadeh [39]. In the past
decadesmany researchers have introduced fuzzy theory
into FLA problem Bhattacharya et al. [1], Chen and
Wei [3], Darzentas [7], Zhou and Liu [42, 43], Wen and
Iwamura [37].
However, a lot of surveys showed that this assump-

tion is also not suitable. For example, we say “the
customer’s demand is about 100”. Generally, we
employ fuzzy variable to describe the concept of “about
100”, then there exists a membership function, such as
a triangular one (90, 100, 110). Based on this member-
ship function, possibility theory will conclude: (a) the
demand is “exactly 100” with belief degree 1, and (b)
the demand is “not 100” with belief degree 1. Obvi-
ously, the belief degree of “exactly 100” is almost zero.
Besides, (b) indicates “not 100” and “exactly 100” have
the same belief degree. These conclusions are improper.
In order to have a better mathematical tool to deal
with empirical data, uncertainty theory was founded
by Liu [20] in 2007 and refined in 2010 [24]. In this
paper, we will assume the customers’s demands are
uncertain variables, and propose an uncertain facility
location-allocation model with capacitated supply.
Therestof thispaper isorganizedasfollows.Section2

will introduce some basic concepts and properties about
uncertain variables. An uncertain capacitated facility
location-allocation model as well as its equivalent crisp
model is presented in Section 3. In order to solve this
uncertain model, we integrate the simplex algorithm,
MonteCarlo simulation and genetic algorithm to design
a powerful hybrid intelligent algorithm in Section 4.
In Section 5, a numerical example will be provided to
illustrate the performance and the effectiveness of the
proposed model and algorithm. Finally, Section 6 will

give the conclusion, in which the contributions of this
paper and future research plans are shown.

2. Preliminaries

Uncertainty theory was founded by Liu [20] in 2007
and refined by Liu [24] in 2010. As extensions of
uncertainty theory, uncertain process and uncertain dif-
ferential equations Liu [21], uncertain calculus Liu [22]
were proposed. Uncertain programming was first pro-
posed by Liu [23] in 2009, which wants to deal with
the optimal problems involving uncertain variable. This
work was followed by an uncertain multiobjective pro-
gramming and an uncertain goal programming Liu and
Chen [26], and an uncertain multilevel programming
Liu and Yao [27]. Since that, uncertainty theory was
used to solve variety of real optimal problems, including
financeChen andLiu [4], Peng [33], Liu [28], reliability
analysis Liu [25], Zeng et al. [40], graph Gao [10], Gao
and Gao [11], et al. Nowadays uncertainty theory has
become a branch of axiomatic mathematics for mod-
eling human uncertainty. In this section, we will state
some basic concepts and results on uncertain variable
and uncertain programming. These results are crucial
for the remainder of this paper.
Let � be a nonempty set, and L a σ-algebra over �.

Each element � ∈ L is assigned a number M{�} ∈
[0, 1]. In order to ensure that the number M{�} has
certainmathematical properties, Liu [20][22] presented
the four axioms:

Axiom 1. M{�} = 1 for the universal set �.
Axiom 2. M{�} + M{�c} = 1 for any event �.
Axiom 3. For every countable sequence of events

�1, �2, · · · , we have

M
{ ∞⋃

i=1
�i

}
≤

∞∑
i=1

M{�i}.

Axiom 4. Let (�k,Lk,Mk) be uncertainty spaces for
k = 1, 2, · · · , ∞. Then the product uncertain
measureM is an uncertain measure satisfying

M
{ ∞∏

k=1
�k

}
=

∞∧
k=1

Mk{�k}.

If the set functionM satisfies the first three axioms,
it is called an uncertain measure.
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Fig. 1. Empirical uncertainty distribution.

Definition 1. Liu [20] Let � be a nonempty set,M a
σ-algebra over �, andM an uncertain measure. Then
the triplet (�,L,M) is called an uncertainty space.

2.1. Uncertain variable

Definition 2. Liu [20] An uncertain variable is a mea-
surable function ξ from an uncertainty space (�,L,M)
to the set of real numbers, i.e., for any Borel set B of
real numbers, the set

{ξ ∈ B} = {γ ∈ �}|ξ(γ) ∈ B} (1)

is an event.

Definition 3. Liu [20] The uncertainty distribution �

of an uncertain variable ξ is defined by

�(x) = M{ξ ≤ x} (2)

for any real number x.

Example 1. An uncertain variable ξ is said to have an
empirical uncertainty distribution if

�(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if x < x1

αi + (αi+1 − αi)(x − xi)

xi+1 − xi

, if xi ≤ x ≤ xi+1

1, if x > xn

denoted by E(x1, α1, x2, α2, · · · , xn, αn), where x1 <

x2 < · · · < xn and 0 ≤ α1 ≤ α2 ≤ · · · ≤ αn ≤ 1.
Example 2. The inverse uncertainty distribution of
zigzag uncertain variable Z(a, b, c) is

�−1(α) =
{

(1− 2α)a + 2αb, if α < 0.5

(2− 2α)b + (2α − 1)c, if α ≥ 0.5.
Definition 4. Liu [24] Let ξ be an uncertain variable.
Then the expected value of ξ is defined by

Fig. 2. Inverse zigzag uncertainty distribution.

E[ξ] =
∫ +∞

0
M{ξ ≥ r}dr −

∫ 0

−∞
M{ξ ≤ r}dr (3)

provided that at least one of the two integrals is finite.

Example 3. The zigzag uncertain variable ξ ∼
Z(a, b, c) has an expected value

E[ξ] = a + 2b + c

4
.

Example 4. Let ξ have an empirical uncertainty distri-
bution, i.e., ξ ∼ E(x1, α1, x2, α2, · · · , xn, αn). Then

E[ξ] = α1+α2
2 x1 +∑n−1

i=2
αi+1−αi−1

2 xi

+
(
1− αn−1+αn

2

)
xn

where x1 < x2 < · · · < xm and 0 ≤ α1 ≤ α2 ≤ · · · ≤
αn ≤ 1.

Definition 5. Liu [24] An uncertainty distribution � is
said to be regular if its inverse function �−1(α) exists
and is unique for each α ∈ (0, 1).

Definition 6. Liu [22] The uncertain variables
ξ1, ξ2, · · · , ξn are said to be independent if

M
{

n⋂
i=1
(ξi ∈ Bi)

}
=

n∧
i=1

M {ξi ∈ Bi} (4)

for any Borel sets B1, B2, · · · , Bn.

Theorem 1. Liu and Ha [29] Assume ξ1, ξ2, · · · , ξn are
independent uncertain variables with regular uncer-
tainty distributions �1, �2, · · · , �n, respectively. If
f (x1, x2, · · · , xn) is strictly increasing with respect
to x1, x2, · · · , xm and strictly decreasing with respect
to xm+1, xm+2, · · · , xn, then the uncertain variable
ξ = f (ξ1, ξ2, · · · , ξn) has an expected value
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E[ξ] = ∫ 1
0 f (�−1

1 (α), · · · , �−1
m (α), �−1

m+1(1− α),

· · · , �−1
n (1− α))dα

(5)
provided that E[ξ] exists.

Example 5.Let ξ andη be independent and nonnegative
uncertain variables with regular uncertainty distribu-
tions � and 
, respectively. Then

E[ξη] =
∫ 1

0
�−1(α)
−1(α)|dα.

Example 6. Let ξ be an uncertain variable with regular
uncertainty distribution �. Then

E[exp(ξ)] =
∫ 1

0
exp(�−1(α))dα.

Theorem 2. Liu [24] Let ξ1, ξ2, · · · , ξn be independent
uncertain variables with regular uncertainty distribu-
tions �1, �2, · · · , �n, respectively. If f is a strictly
increasing function, then

ξ = f (ξ1, ξ2, · · · , ξn) (6)

is an uncertain variable with inverse uncertainty distri-
bution


−1(α) = f (�−1
1 (α), �

−1
2 (α), · · · , �−1

n (α)). (7)

Example 7. Let ξ be an uncertain variable with reg-
ular uncertainty distribution �. since f (x) = ax + b

is a strictly increasing function for any constants
a > 0 and b, the inverse uncertainty distribution of
aξ + b is


−1(α) = a�−1
1 (α)+ b. (8)

Example 8. Let ξ1, ξ2, · · · , ξn be independent uncer-
tain variables with regular uncertainty distributions
�1, �2, · · · , �n, respectively. Since

f (x1, x2, · · · , xn) = x1 + x2 + · · · + xn (9)

is a strictly increasing function, the sum

ξ = ξ1 + ξ2 + · · · + ξn (10)

is an uncertain variable with inverse uncertainty
distribution


−1(α) = �−1
1 (α)+ �−1

2 (α)+ · · · + �−1
n (α). (11)

2.2. Uncertain programming

Uncertain programming, which was first proposed
by Liu [23] in 2009, is a type of mathematical pro-
gramming involving uncertain variables. After that, an
uncertainmultiobjective programming and an uncertain
goal programming Liu and Chen [26], and an uncer-
tain multilevel programming Liu and Yao [27] were
provided.
Assume that x is a decision vector, and ξ is

an uncertain vector. Since the uncertain program-
ming model contains the uncertain objective function
f (x, ξ) and uncertain constraints gj(x, ξ) ≤ 0, j =
1, 2, · · · , p, Liu [23] proposed the following uncertain
programming model,⎧⎪⎨⎪⎩

min
x

E[f (x, ξ)]

subject to:

M{gj(x, ξ) ≤ 0} ≥ αj, j = 1, 2, · · · , p.

(12)
Definition 7. Liu [24] A vector x is called a feasible
solution to Model (12) if

M{gj(x, ξ) ≤ 0} ≥ αj (13)

for j = 1, 2, · · · , p.

Definition 8. Liu [24] A feasible solution x∗ is called
an optimal solution to Model (12) if

E[f (x∗, ξ)] ≤ E[f (x, ξ)] (14)

for any feasible solution x.

Theorem 3. Liu [24] Assume f (x, ξ1, ξ2, · · · , ξn) is
strictly increasing with respect to ξ1, ξ2, · · · , ξm and
strictly decreasing with respect to ξm+1, ξm+2, · · · , ξn,
and gj(x, ξ1, ξ2, · · · , ξn) are strictly increasing with
respect to ξ1, ξ2, · · · , ξk and strictly decreasing with
respect to ξk+1, ξk+2, · · · , ξn for j = 1, 2, · · · , p. If
ξ1, ξ2, · · · , ξn are independent uncertain variables
with uncertainty distributions �1, �2, · · · , �n, respec-
tively, then the uncertain programming⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
x

E[f (x, ξ1, ξ2, · · · , ξn)]

subject to:

M{gj(x, ξ1, ξ2, · · · , ξn) ≤ 0} ≥ αj,

j = 1, 2, · · · , p

(15)

is equivalent to the crisp mathematical programming
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

∫ 1

0
f (x, �−1

1 (α), · · · , �−1
m (α),

�−1
m+1(1− α), · · · , �−1

n (1− α))dα

subject to:

gj(x, �−1
1 (αj), · · · , �−1

k (αj),

�−1
k+1(1− αj), · · · , �−1

n (1− αj)) ≤ 0,
j = 1, 2, · · · , p.

3. Uncertain capacitated FLA problem

The capacitated continuous FLA problem is to find
the locations of n facilities in continuous space in order
to serve customers atm fixed points as well as the allo-
cation of each customer to the facilities so that total
transportation costs are minimized. In order to model
the capacitated FLA problem, firstly we make some
assumptions:

1. Each facility has a limited capacity. Thus we need
to select locations and decide the amount from
each facility i to each customer j.

2. The path between any customers and facilities is
connected and transportation cost is proportionate
to the quantity supplied and the travel distance.

3. Facility i is assumed to be located within a
certain region Ri = {(xi, yi)|gi(xi, yi) ≤ 0}, i =
1, 2, . . . , n, respectively.

As we know, when we use probability or statistics
to build models, a large amount of historical data is
needed. However, in most case the sample size is too
small (even no-sample) to estimate a probability distri-
bution. Then we have to invite some domain experts to
evaluate their belief degree that each event will occur.
This provides a motivation for Liu [20] to found an
uncertainty theory. Then we will give the symbols and
notations as follows:

i = 1, 2, . . . , n is the index of facilities;
j = 1, 2, . . . , m is the index of customers;
(aj, bj) denotes the location of customer j, 1 ≤

j ≤ m;
ξj is the uncertain demand of customer j, 1 ≤ j ≤ m;
�j is the uncertainty distribution of ξj , 1 ≤ j ≤ m;
si is the capacity of facility i, 1 ≤ i ≤ n;
(xi, yi) is the decision variable which represents the

location of facility i, 1 ≤ i ≤ n;

zij denotes the quantity supplied by facility i to
customerj, 1 ≤ i ≤ n, 1 ≤ j ≤ m.
For convenience, we also write

Z(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

zij ≥ 0, i=1, 2, . . . , n, j=1, 2, . . . , m

z|
n∑

i=1
zij = ξj, j = 1, 2, . . . , m

m∑
j=1

zij ≤ si, i = 1, 2, . . . , n

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

(16)
Then we can give the uncertain transportation cost

with the best allocation z,

C(x, y, ξ)= min
z∈Z(ξ)

n∑
i=1

m∑
j=1

zij

√
(xi − aj)2+(yi − bj)2.

(17)
If Z(ξ) is an empty set for some ξ, we can define

C(x, y, ξ) =
m∑

j=1
max
1≤i≤n

ξj

√
(xi − aj)2 + (yi − bj)2.

(18)

3.1. Uncertainty distributions of customers’
demands

Liu [24] proposed a questionnaire survey for collect-
ing expert’s experimental data. It is based on expert’s
experimental data rather than historical data. The start-
ing point is to invite one expertwho is asked to complete
a questionnaire about the meaning of an uncertain
demand ξ like “How many is the customer’s demand”.
We first ask the domain expert to choose a possible

value x that the uncertain demand ξ may take, and then
quiz him
“How likely is ξ less than or equal to x?”
Denote the expert’s belief degree by α. An expert’s

experimental data (x, α) thus acquired from the domain
expert.
Repeating the above process, we can obtain the fol-

lowing expert’s experimental data

(x1, α1), (x2, α2), · · · , (xn, αn) (19)

that meet the following consistence condition (perhaps
after a rearrangement)

x1 < x2 < · · · < xn, 0 ≤ α1 ≤ α2 ≤ · · · αn ≤ 1.
(20)
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Based on those expert’s experimental data, Liu [24]
suggested an empirical uncertainty distribution,

�(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x ≤ x1

αi + (αi+1 − αi)(x − xi)

xi+1 − xi

, xi ≤ x ≤ xi+1,

1, x > xn.

(21)
denoted by E(x1, α1, x2, α2, · · · , xn, αn). Essentially, it
is a type of linear interpolationmethod. The distribution
function has been shown in Fig. 1.
Assume there are m domain experts and each pro-

duces an uncertainty distribution. Then we may get
m uncertainty distributions �1(x), �2(x), · · · , �m(x).
The Delphi method was originally developed in the
1950s by the RAND Corporation based on the assump-
tion that group experience is more valid than individual
experience. Wang et al. [36] recast the Delphi method
as a process to determine the uncertainty distribution.
The main steps are listed as follows:

Step 1: The m domain experts provide their expert’s
experimental data,

(xij, αij), j = 1, 2, · · · , ni, i = 1, 2, · · · , m.

(22)
Step 2: Use the i-th expert’s experimental data
(xi1, αi1), (xi2, αi2), · · · , (xini , αini ) to generate the
i-th expert’s uncertainty distribution �i.

Step 3: Compute �(x) = w1�1(x)+ w2�2(x)+ · · ·
+ wm�m(x) where w1, w2, · · · , wm are convex
combination coefficients.

Step 4: If |αij − �(xij)| are less than a given level
ε > 0, then go to Step 5. Otherwise, the i-th expert
receives the summary (� and reasons), and then pro-
vides a set of revised expert’s experimental data. Go
to Step 2.

Step 5: The last� is the uncertainty distribution of the
customer’s demand.

3.2. Uncertain expected value model

The essential idea of the expected cost minimization
model is to optimize the expected value of C(x, y, ξ)
subject to some expected constraints. Zhou andLiu [41]
have formulated the expected cost minimization model
under stochastic demands. Herewe shall give themodel
with uncertain environment as follows:

⎧⎪⎪⎨⎪⎪⎩
min
x,y

E[C(x, y, ξ)]

subject to :

gi(x, y) ≤ 0, i = 1, 2, . . . , p

(23)

where gi(x, y) ≤ 0, i = 1, 2, . . . , p, are the potential
regions of locations of new facilities.
Since the uncertain transportation cost C(x, y, ξ) is

strictly increasing with respect to ξ1, ξ2, · · · , ξm, the
uncertain capacitated FLA model is equivalent to⎧⎪⎪⎨⎪⎪⎩
min
x,y

∫ 1
0 C(x, y, �−1

1 (α), �
−1
2 (α), · · · , �−1

m (α))dα

subject to :

gi(x, y) ≤ 0, i = 1, 2, . . . , p.

(24)
The model is different from traditional programming

models because there is a sub-optimal problem in it, i.e.,

C(x, y, �−1
1 (α), �

−1
2 (α), · · · , �−1

m (α))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
z

n∑
i=1

m∑
j=1

zij

√
(xi − aj)2 + (yi − bj)2

subject to :

zij ≥ 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m
n∑

i=1
zij = �−1

j (α), j = 1, 2, . . . , m

m∑
j=1

zij ≤ si, i = 1, 2, . . . , n.

(25)
This sub-optimal problem can be easily solved by

simplex algorithm because it is a linear programming.

4. Hybrid intelligent algorithm

Generally speaking, uncertain programming models
are difficult to solve by traditional methods due to its
complexity.Moreover the FlAproblemhas been proved
to be NP-hard Megiddo and Supowit [30]. Heuristic
methods have been shown to be the best way to tackle
larger NP-hard problems. Modern heuristics such as
simulated annealing, tabu search, genetic algorithms
(GA), variable neighborhood search, and ant systems
increase the chance of avoiding local optimality. In this
paper, we useGAwhichwas shown useful and effective
in solving engineering design and optimization prob-
lems by numerous experiments to compute the FLA
problem. And we use simplex algorithm to solve the
sub-optimal problem (25) in uncertain expected value
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model. In this paper, we integrate the simplex algo-
rithm, Monte Carlo simulation and genetic algorithm
to produce a hybrid intelligent algorithm for solving
the uncertain FLAmodel. We describe the algorithm as
the following procedure:

Step 1. From the potential region {(x, y)|gi(x, y) ≤
0, i = 1, 2, . . . , n}, initialize pop size chro-
mosomes Vk = (xk, yk) = (xk

1, x
k
2, . . . , x

k
n,

yk
1, y

k
2, . . . , yk

n), k = 1, 2, . . . , pop size,
which denote the locations of all the
facilities.

Step 2. Calculate the objective values Uk for all
chromosomesVk, k = 1, 2, . . . , pop size by
Monte Carlo simulation, where the sim-
plex algorithm is used to solve (25) to get
the optimal cost C(x, y, �−1

1 (α), �−1
2 (α),

· · · , �−1
m (α)).

Step 3. Compute the fitness of all chromosomes
Vk, k = 1, 2, . . . , pop size. The rank-based
evaluation function is defined as

Eval(Vk) = β(1− β)k−1,

k = 1, 2, . . . , pop size (26)

where the chromosomes V1,V2,. . . ,Vpop size

are assumed to have been rearranged from
good to bad according to their objective val-
ues Uk and β ∈ (0, 1) is a parameter in the
genetic system.

Step 4. Select the chromosomes for a new popu-
lation. The selection process is based on
spinning the roulette wheel characterized by
the fitness of all chromosomes for pop size

times, and each time we select a sin-
gle chromosome. Thus we obtain pop size

chromosomes, denoted also by Vk, k =
1, 2, . . . , pop size.

Step 5. Renew the chromosomes Vk, k = 1, 2, . . . ,
pop size by crossover operation.We define a
parameterPc of a genetic system as the prob-
ability of crossover. This probability gives us
the expected number Pc · pop size chromo-
somes undergoing the crossover operation.

Step 6. Update the chromosomes Vk, k = 1, 2, . . . ,
pop size by mutation operation. The param-
eter Pm is the probability of mutation,
which gives us the expected number of
Pm · pop size chromosomes undergoing the
mutation operations.

Step 7. Repeat the second to the sixth steps for a
given number of cycles.

Step 8. Report the best chromosome V ∗ = (x∗, y∗)
as the optimal locations.

5. A numerical example

Consider a company that wishes to locate four new
facilities within the square region [0, 100]× [0, 100].
Assume that there are 20 customers whose demands ξi

are zigzag uncertainty variables. The location (ai, bi)
of the customer i is given in Table 1, i = 1, 2, . . . , 20.
The capacities si of the four facilities are 100, 110, 120
and 130, respectively.
We choose 3 experts to give questionnaire surveys.

The process is as follows:

Q1:May I ask you how many demand of customer
1 is? What do you think is the minimum demand?
A1: 13. (an expert’s experimental data (13,0) is
acquired).
Q2:What do you think the maximum demand is?
A2: 17. (an expert’s experimental data (17,1) is
acquired).
Q3:What do you think a likely demand is?
A3: 15.
Q4: What is the belief degree that the real demand
is less than 15?
A4: 0.6. (an expert’s experimental data (15,0.6) is
acquired).

Every expert will give the questionnaire surveys to
every customer. After all the surveys, all the customers’
demands are shown in Table 2.
In the Delphi method, we set w = 1/3. Then we get

the distributions of all the customers in Table 3.
In this example, Model (24) can be written as

Table 1
Locations of the customers

Customer j Location Customer j Location

1 (28,42) 11 (14,78)
2 (18,50) 12 (90,36)
3 (74,34) 13 (78,20)
4 (74,6) 14 (24,52)
5 (70,18) 15 (54,6)
6 (72,98) 16 (62,60)
7 (60,50) 17 (98,14)
8 (36,40) 18 (36,58)
9 (12,4) 19 (38,88)
10 (18,20) 20 (32,54)
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
x,y

∫ 1
0 C(x, y, �−1

1 (α), �
−1
2 (α), · · · , �−1

m (α))dα

subject to :

0 ≤ xi ≤ 100, i = 1, 2, 3, 4

0 ≤ yi ≤ 100, i = 1, 2, 3, 4
(27)

where

C(x, y, �−1
1 (α), �

−1
2 (α), · · · , �−1

m (α)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

z

4∑
i=1

20∑
j=1

zij

√
(xi − aj)2 + (yi − bj)2

subject to :

zij ≥ 0, i = 1, 2, 3, 4, j = 1, 2, . . . , 20

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4∑
i=1

zij = �−1
j (α), j = 1, 2, . . . , 20

20∑
j=1

z1j ≤ 100
20∑

j=1
z2j ≤ 110

20∑
j=1

z3j ≤ 120
20∑

j=1
z4j ≤ 130.

(28)

In Model (27), the goal wants to minimize the total
costs and the constraints denote the square region
[0, 100]× [0, 100]. In order to get the goal function
C(x, y, �−1

1 (α), �
−1
2 (α), · · · , �−1

m (α)), model (28) is
given. Inmodel (28), the constraint

∑4
i=1 zij = �−1

j (α)
implies that the total supply amounts can not exceed

Table 2
Uncertain demands got from 3 experts

Customer j Expert 1 Expert 2 Expert 3

1 E(13, 0, 15, 0.6, 17, 1) E(13, 0.15, 15, 0.75, 17, 1) E(13, 0, 15, 0.45, 17, 0.9)
2 E(13, 0, 14, 0.5, 18, 1) E(13, 0, 14, 0.4, 18, 0.9) E(13, 0.1, 14, 0.6, 18, 1)
3 E(12, 0.1, 14, 0.6, 16, 1) E(12, 0, 14, 0.4, 16, 0.8) E(12, 0, 14, 0.5, 16, 0.9)
4 E(17, 0, 18, 0.4, 20, 0.7) E(17, 0, 18, 0.3, 20, 0.7) E(17, 0, 18, 0.5, 20, 1)
5 E(21, 0, 23, 0.3, 26, 0.7) E(21, 0, 23, 0.4, 26, 0.8) E(21, 0, 23, 0.3, 26, 0.8)
6 E(24, 0.1, 26, 0.7, 28, 1) E(24, 0, 26, 0.5, 28, 0.9) E(24, 0.1, 26, 0.6, 28, 1)
7 E(13, 0, 15, 0.7, 16, 1) E(13, 0, 15, 0.6, 16, 1) E(13, 0.1, 15, 0.8, 16, 1)
8 E(12, 0, 14, 0.3, 17, 0.8) E(12, 0, 14, 0.4, 17, 0.8) E(12, 0, 14, 0.5, 17, 1)
9 E(13, 0, 15, 0.6, 17, 1) E(13, 0, 15, 0.5, 17, 1) E(13, 0.3, 15, 0.7, 17, 1)
10 E(22, 0.1, 24, 0.3, 26, 0.6) E(22, 0, 24, 0.3, 26, 0.7) E(22, 0, 24, 0.2, 26, 0.5)
11 E(13, 0, 15, 0.7, 17, 1) E(13, 0, 15, 0.5, 17, 1) E(13, 0, 15, 0.4, 17, 0.8)
12 E(11, 0, 14, 0.6, 17, 1) E(11, 0, 14, 0.5, 17, 1) E(11, 0, 14, 0.4, 17, 0.9)
13 E(13, 0.2, 15, 0.6, 19, 1) E(13, 0.3, 15, 0.8, 19, 1) E(13, 0, 15, 0.5, 19, 1)
14 E(11, 0, 13, 0.2, 16, 0.5) E(11, 0, 13, 0.3, 16, 0.7) E(11, 0, 13, 0.4, 16, 0.9)
15 E(20, 0, 24, 0.5, 26, 1) E(20, 0, 24, 0.4, 26, 0.9) E(20, 0, 24, 0.4, 26, 0.8)
16 E(16, 0, 18, 0.3, 23, 1) E(16, 0, 18, 0.2, 23, 0.9) E(16, 0, 18, 0.4, 23, 1)
17 E(18, 0, 19, 0.1, 22, 0.8) E(18, 0, 19, 0.3, 22, 0.8) E(18, 0, 19, 0.4, 22, 1)
18 E(13, 0.2, 14, 0.3, 17, 0.6) E(13, 0.3, 14, 0.4, 17, 0.8) E(13, 0.1, 14, 0.2, 17, 0.7)
19 E(16, 0, 1, 17, 0.3, 20, 1) E(16, 0, 2, 17, 0.4, 20, 1) E(16, 0, 1, 17, 0.2, 20, 0.8)
20 E(19, 0, 22, 0.7, 25, 1) E(19, 0, 22, 0.5, 25, 0.8) E(19, 0, 22, 0.7, 25, 1)

Table 3
Uncertain demands of the customers

Customer j Expert 1 Expert 2 Expert 3

1 E(13, 0.05, 15, 0.6, 17, 0.96) 11 E(13, 0, 15, 0.53, 17, 0.93)
2 E(13, 0.03, 14, 0.5, 18, 0.96) 12 E(11, 0, 14, 0.5, 17, 0.97)
3 E(12, 0.03, 14, 0.5, 16, 0.9) 13 E(13, 0.17, 15, 0.63, 19, 1)
4 E(17, 0, 18, 0.4, 20, 0.8) 14 E(11, 0, 13, 0.3, 16, 0.7)
5 E(21, 0, 23, 0.3, 26, 0.77) 15 E(20, 0, 24, 0.43, 26, 0.9)
6 E(24, 0.37, 26, 0.6, 28, 0.97) 16 E(16, 0, 18, 0.3, 23, 0.97)
7 E(13, 0.03, 15, 0.7, 16, 1) 17 E(18, 0, 19, 0.27, 22, 0.87)
8 E(12, 0, 14, 0.4, 17, 0.93) 18 E(13, 0.2, 14, 0.3, 17, 0.7)
9 E(13, 0.1, 15, 0.6, 17, 1) 19 E(16, 0, 13, 17, 0.3, 20, 0.93)
10 E(22, 0.03, 24, 0.27, 26, 0.6) 20 E(19, 0, 22, 0.63, 25, 0.93)
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Table 4
Comparison solutions

pop size Pc Pm β Locations Cost Error (%)

1 20 0.3 0.1 0.10 (72,15),(40,88),(60,51),(26,42) 5731 0.5
2 20 0.3 0.1 0.05 (78,19),(23,15),(64,77),(32,51) 5700 0.0
3 20 0.3 0.2 0.10 (74,20),(20,24),(60,91),(33,57) 5792 1.6
4 20 0.3 0.2 0.05 (73,16),(40,88),(60,51),(26,42) 5742 0.7
5 20 0.2 0.2 0.08 (75,21),(60,91),(60,24),(33,57) 5788 1.5
6 30 0.3 0.1 0.05 (72,14),(64,77),(23,15),(32,51) 5743 0.8
7 30 0.3 0.1 0.10 (75,17),(60,91),(20,24),(33,57) 5786 0.1
8 30 0.3 0.2 0.05 (74,19),(40,88),(60,51),(26,42) 5729 1.5
9 30 0.3 0.2 0.10 (78,19),(64,77),(23,15),(32,51) 5744 0.8
10 30 0.2 0.2 0.08 (76,17),(64,77),(23,15),(32,51) 5758 1.0

customer demand, j = 1, 2, . . . , 20. Otherwise, the
waste of resources appears, which is not allowed in
supply chain. The last four constraints express the
capacities of the four facilities.
In order to solve Model (27), the hybrid intelli-

gent algorithm is employed. Monte Carlo simulation
has been run with 5000 cycles in every generation in
GA. After 1000 generations in GA, we get the optimal
results in Table 4. In Table 4, we compare solutionswith
different number of chromosomes pop size, different
probability of crossover Pc and different probability
of mutation Pm taken with the same stopping rule.
It appears that all the minimal costs differ little from
each other. The percent error of the last column can
be expressed by (actual value - optimal value)/optimal
value ×100%, where optimal value is the least one of
all the ten minimal costs. It follows from Table 5 that
the percent error does not exceed 1.6% when different
parameters are selected, which implies that the hybrid
intelligent algorithm is robust to the parameter settings
and effective to solve Model (23).

6. Conclusion

In this paper, we have contributed to the research area
of the FLA problem in the following three aspects.

(i) The expected value FLA model was proposed
under uncertain environment, which can be converted
to a crisp mathematical programming;
(ii) To solve the models efficiently, we integrated
the simplex algorithm, Monte Carlo simulation and
genetic algorithm to produce a hybrid intelligent algo-
rithm.
(iii) A numerical example was provided to illustrate
the expected value model and the performance of the
hybrid intelligent algorithm.

Several further studies should be considered. For one
thing,wewill try to present other uncertain FLAmodels
besides expected valuemodel. In addition,wewill try to
apply the expected value FLAmodel to the actual case,
and then modify this uncertain model. Moreover, we
will give some researches to the hybrid FLA problem in
which the randomness and fuzziness of the customers’
demands are mixed up with each other.
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Abstract Facility location-allocation problem aims at determining the locations of
some facilities to serve a set of spatially distributed customers and the allocation of
each customer to the facilities such that the total transportation cost is minimized. In
real life, the facility location-allocation problem often comes with uncertainty for lack
of the information about the customers’ demands. Within the framework of uncertainty
theory, this paper proposes an uncertain facility location-allocation model by means
of chance-constraints, in which the customers’ demands are assumed to be uncertain
variables. An equivalent crisp model is obtained via the α-optimistic criterion of the
total transportation cost. Besides, a hybrid intelligent algorithm is designed to solve
the uncertain facility location-allocation problem, and its viability and effectiveness
are illustrated by a numerical example.
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1 Introduction

With the rapid development of supply chain management in recent decades, facility
location-allocation problem, one of the most representative problems in strategic sup-
ply chain management, has also received much attention from the researchers. Facility
location-allocation problem was initialized by Cooper (1963) to find the locations of
some facilities to serve some spatially distributed customers. In Murtagh and Niwat-
tisyawong (1982), considered the capacity constraint of each facility, and proposed
a capacitated facility location-allocation model. Then Badri (1999) and Hodey et al.
(1997) studied the facility location-allocation problem using goal programming and
multi-object programming approaches, respectively. In Murray and Church (1996),
solved the facility location-allocation problem by simulated annealing algorithm. After
that, Gong et al. (1995) solved the problem by genetic algorithm.

For lack of the precise demands of the customers, the facility location-allocation
problem often contains some indeterminacy factors. In Logendran and Terrell (1988),
presented an uncapacitated stochastic facility location-allocation model with random
demands which are sensitive with respect to the price. Then Zhou and Liu (2003) pro-
posed a capacitated facility location-allocation model with random demands. Darzen-
tas (1987) first proposed a fuzzy facility location-allocation model in 1987, where
the locations of the facilities were chosen from a set of discrete points. Then Zhou
and Liu (2007) presented a facility location-allocation model, in which the customers’
demands were described as fuzzy variables. After that, Wen and Iwamura (2008) gave
a fuzzy facility location-allocation model via Hurwicz criterion.

In Liu (2007), founded an uncertainty theory to deal with human’s belief degree
mathematically, and in 2010, Liu (2010) refined it based on normality, duality, subad-
ditivity and product measure axioms. As we know, in order to obtain the probability
distribution of an indeterminacy quantity, we need a lot of samples to apply the sta-
tistics inference approach. However, due to economical or technological reasons, we
sometimes have no sample about the indeterminacy quantity. In this case, we have
to invite the domain experts to evaluate the belief degree that each possible event
happens. Since human tends to overweight unlikely events (Kahneman and Tversky
1979), the belief degree has a much larger variance than the frequency, and cannot be
treated as a probability distribution of a random variable. In this case, we can regard
the belief degree as an uncertainty distribution of some uncertain variable, and deal
with it via uncertainty theory. In order to model the evolution of uncertain phenom-
ena, a concept of uncertain process was proposed by Liu (2008), as a generalization
of uncertain variable.

Uncertain programming, as a spectrum of mathematical programming involving
uncertain variables, was proposed by Liu (2009). Then Liu and Yao (2012) further
studied uncertain multilevel programming, and Liu and Chen (2013) further stud-
ied uncertain multi-objective programming. As an application of uncertain program-
ming, Gao (2012) proposed a facility allocation problem on a network. Qin and Kar
(2013) presented a single-period inventory problem with uncertain demands, and Wang
et al. (2013) presented an uncertain price discrimination model in labor market.

In this paper, we will assume the customers’ demands are uncertain variables, and
propose an uncertain facility location-allocation model with capacitated supply. The
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rest of this paper is organized as follows. Section 2 will introduce some basic concepts
and properties about uncertain variables. Then an uncertain facility location-allocation
model called α-cost minimization model as well as its equivalent crisp model will be
presented in Sect. 3. In order to solve the uncertain model, a hybrid intelligent algorithm
will be designed in Sect. 4, and a numerical example will be given to illustrate the
algorithm in Sect. 6.

2 Preliminaries

Uncertainty theory was founded by Liu (2007) and refined by Liu (2010) to deal with
human’s belief degree. A concept of uncertain measure was first proposed to indicate
the belief degree that an uncertain event happens. Then an uncertain variable was
given to model the quantity in uncertain situation. After that, concepts of uncertainty
distribution, expected value and variance were given to describe an uncertain variable.
So far, uncertainty theory has been applied to risk analysis (Liu 2010), reliability
analysis (Liu 2010; Zeng et al. 2013), logic (Li and Liu 2009).

Let � be a nonempty set, and L be a σ -algebra over �. Each element � ∈ L is
called an event. In order to assign a number M{�} ∈ [0, 1] to each event �, Liu (2007,
2009) presented four axioms:

Axiom 1. M{�} = 1 for the universal set �.
Axiom 2. M{�} + M{�c} = 1 for any event �.
Axiom 3. For every countable sequence of events �1,�2, . . ., we have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i }.

Axiom 4. Let (�k,Lk,Mk) be uncertainty spaces for k = 1, 2, . . . Then the product
uncertain measure M is an uncertain measure satisfying

M

{ ∞∏
i=1

�k

}
=

∞∧
k=1

Mk{�k}

where �k are arbitrarily chosen events from Lk for k = 1, 2, . . ., respec-
tively.

Definition 1 (Liu 2007) An uncertain variable ξ is a measurable function from an
uncertainty space (�,L,M) to the set of real numbers, i.e., for any Borel set B of real
numbers, the set

{ξ ∈ B} = {γ ∈ � | ξ(γ ) ∈ B}

is an event.
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Definition 2 (Liu 2009) The uncertain variables ξ1, ξ2, . . . , ξn are said to be indepen-
dent if

M

{
n⋂

i=1

(ξi ∈ Bi )

}
=

n∧
i=1

M {ξi ∈ Bi }

for any Borel sets B1, B2, . . . , Bn .

In order to describe an uncertain variable, a concept of uncertainty distribution is
defined as follows.

Definition 3 (Liu 2007) The uncertainty distribution � of an uncertain variable ξ is
defined by

�(x) = M {ξ ≤ x}

for any real number x .

Example 1 An uncertain variable ξ is called zigzag if it has a zigzag uncertainty
distribution

�(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if x ≤ a

x − a

2(b − a)
, if a < x ≤ b

x + c − 2b

2(c − b)
, if b < x ≤ c

1, if x > c

denoted by Z(a, b, c) where a, b, c are real numbers with a < b < c.

Definition 4 (Liu 2010) An uncertainty distribution � of an uncertain variable ξ is
said to be regular if its inverse function �−1(α) exists and is unique for each α ∈ (0, 1).
In this case, the inverse function �−1(α) is called the inverse uncertainty distribution
of ξ.

Example 2 The inverse uncertainty distribution of a zigzag uncertain variable
Z(a, b, c) is

�−1(α) =
{

(1 − 2α)a + 2αb, if α ≤ 0.5

(2 − 2α)b + (2α − 1)c, if α > 0.5.

Theorem 1 (Liu 2010) Let ξ1, ξ2, . . . , ξn be independent uncertain variables with reg-
ular uncertainty distributions�1,�2, . . . , �n, respectively. If f is a strictly increasing
function, then

ξ = f (ξ1, ξ2, . . . , ξn)
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is an uncertain variable with an inverse uncertainty distribution

�−1(α) = f (�−1
1 (α),�−1

2 (α), . . . , �−1
n (α)).

Example 3 Let ξ1, ξ2, . . . , ξn be independent uncertain variables with regular uncer-
tainty distributions �1,�2, . . . , �n , respectively. Then

ξ = ξ1 + ξ2 + · · · + ξn

is an uncertain variable with an inverse uncertainty distribution

�−1(α) = �−1
1 (α) + �−1

2 (α) + · · · + �−1
n (α).

Definition 5 (Liu 2007) The expected value of an uncertain variable ξ is defined by

E[ξ ] =
+∞∫
0

M{ξ ≥ x}dx −
0∫

−∞
M{ξ ≤ x}dx

provided that at least one of the two integrals is finite.

Theorem 2 Let ξ be an uncertain variable with an uncertainty distribution �. If E[ξ ]
exists, then

E[ξ ] =
+∞∫
0

(1 − �(x))dx −
0∫

−∞
�(x)dx .

Example 4 The expected value of a zigzag uncertain variable Z(a, b, c) is

E[ξ ] = a + 2b + c

4
.

Theorem 3 (Liu and Ha 2010) Assume that ξ1, ξ2, . . . , ξn are independent uncer-
tain variables with regular uncertainty distributions �1,�2, . . . , �n, respectively. If
f (x1, x2, . . . , xn) is strictly increasing with respect to x1, x2, . . . , xm and strictly
decreasing with respect to xm+1, xm+2, . . . , xn, then the uncertain variable ξ =
f (ξ1, ξ2, . . . , ξn) has an expected value

E[ξ ] =
1∫

0

f
(
�−1

1 (α), . . . , �−1
m (α),�−1

m+1(1 − α), . . . , �−1
n (1 − α)

)
dα.
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3 Uncertain facility location-allocation problem

The capacitated continuous facility location-allocation problem is to find the locations
of n facilities in a continuous space to serve m customers at some fixed points, and to
allocate each customer to the facilities so that the total transportation cost is minimized.
Before modelling the capacitated facility location-allocation problem, we first make
some assumptions as follows.

1. Each facility has a limited capacity. Thus we need to decide the amount transported
from each facility to each customer.

2. The path between every customer and every facility is connected, and the trans-
portation cost is proportionate to the transportation distance and the transportation
quantity.

3. The demand of each customer must be satisfied.
4. Facility i is assumed to be located within a certain region Ri = {(xi , yi )|gi (xi , yi )

≤ 0}, i = 1, 2, . . . , n, respectively.

Sometimes, we have little sample data about the customers’ demands in daily life. In
this case, we have to invite the domain experts to evaluate their belief degree about the
customers’ demands. Now, we regard the belief degree about each customer’s demand
as an uncertainty distribution in the framework of uncertainty theory, and formulate
an uncertain capacitated facility location-allocation model. We will use the following
symbols in the model:

(a j , b j ): location of customer j, j = 1, 2, . . . , m;
ξ j : demand of customer j, j = 1, 2, . . . , m, uncertain variables;
� j : uncertainty distribution of ξ j , j = 1, 2, . . . , m;
(xi , yi ): location of facility i, i = 1, 2, . . . , n, decision variables;
si : capacity of facility i, i = 1, 2, . . . , n;
zi j : quantity transported from facility i to customer j, i = 1, 2, . . . , n,

j = 1, 2, . . . , m.

Since the uncertain demand of each customer must be satisfied, the total transporta-
tion cost C is an uncertain variable decided by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C (x, y, ξ(γ )) = min
zi j (γ )

n∑
i=1

m∑
j=1

zi j (γ )

√
(xi − a j )2 + (yi − b j )2

subject to:
n∑

i=1
zi j (γ ) ≥ ξ j (γ ), j = 1, 2, . . . , m

m∑
j=1

zi j (γ ) ≤ si , i = 1, 2, . . . , n

zi j (γ ) ≥ 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m.

(1)

Chance-constrained programming, initialized by Charnes and Cooper (1961), is a
powerful tool to deal with an indeterminacy system. The essence of chance-constrained
programming is to optimize some critical value with a given confidence level subject to
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some chance constraints. Now we apply the chance-constrained programming model
to facility location-allocation problem, and present an uncertain facility location-
allocation model named α-cost minimization model,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
x,y

f

subject to :

M{C(x, y, ξ) ≤ f } ≥ α

gi (xi , yi ) ≤ 0, i = 1, 2, . . . , n

(2)

where C(x, y, ξ) is the uncertain transportation cost determined by (1), and α ∈ (0, 1)

is a predetermined confidence level.
Note that the α-cost minimization model (2) contains a sub-optimization problem

(1), which enormously increases the complexity of the solution procedure. In order to
design a hybrid intelligent algorithm to solve it, we first transform it to an equivalent
crisp model.

Theorem 4 The α-cost minimization model (2) is equivalent to the crisp model⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x,y,z

n∑
i=1

m∑
j=1

zi j

√
(xi − a j )2 + (yi − b j )2

subject to:
n∑

i=1
zi j ≥ �−1

j (α), j = 1, 2, . . . , m

m∑
j=1

zi j ≤ si , i = 1, 2, . . . , n

zi j ≥ 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m

gi (xi , yi ) ≤ 0, i = 1, 2, . . . , n.

(3)

Proof Since the uncertain transportation cost C(x, y, ξ) is strictly increasing with
respect to ξ1, ξ2, · · · , ξm , it follows from Theorem 1 that C(x, y, ξ) has an inverse
uncertainty distribution

�−1(x, y, α) = C
(

x, y,�−1
1 (α),�−1

2 (α), . . . , �−1
n (α)

)
.

Thus

M {C (x, y, ξ1, ξ2, . . . , ξm) ≤ f } ≥ α

holds if and only if

C
(

x, y,�−1
1 (α),�−1

2 (α), . . . , �−1
n (α)

)
≤ f.
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As a result, the α-cost minimization model (2) is equivalent to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
x,y

f

subject to :

C
(

x, y,�−1
1 (α),�−1

2 (α), . . . , �−1
n (α)

)
≤ f

gi (xi , yi ) ≤ 0, i = 1, 2, . . . , n,

which can be rewritten as

⎧⎪⎪⎨⎪⎪⎩
min
x,y

C(x, y,�−1
1 (α),�−1

2 (α), . . . , �−1
n (α))

subject to :

gi (xi , yi ) ≤ 0, i = 1, 2, . . . , n.

(4)

Note that the cost function C(x, y,�−1
1 (α), . . . , �−1

n (α)) is determined by the fol-
lowing model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
z

n∑
i=1

m∑
j=1

zi j

√
(xi − a j )2 + (yi − b j )2

subject to:
n∑

i=1
zi j ≥ �−1

j (α), j = 1, 2, . . . , m

m∑
j=1

zi j ≤ si , i = 1, 2, . . . , n

zi j ≥ 0, i = 1, 2, · · · , n, j = 1, 2, . . . , m.

(5)

Combining Models (4) and (5), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x,y,z

n∑
i=1

m∑
j=1

zi j

√
(xi − a j )2 + (yi − b j )2

subject to:
n∑

i=1
zi j ≥ �−1

j (α), j = 1, 2, . . . , m

m∑
j=1

zi j ≤ si , i = 1, 2, . . . , n

zi j ≥ 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m

gi (xi , yi ) ≤ 0, i = 1, 2, . . . , n.

The theorem is thus proved.
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4 Hybrid intelligent algorithm

Genetic algorithm has shown great effectiveness in solving engineering design and
optimization problems in numerous experiments. In this section, we will employ sim-
plex method to solve the sub-optimal problem (5), and genetic algorithm to solve
the α-cost minimization problem (4). In other words, we will integrate the simplex
method and genetic algorithm to produce a hybrid intelligent algorithm for solving
the uncertain facility location-allocation model (3). The hybrid intelligent algorithm
is described in detail as the following procedures:

Step 1. From the potential region {(x, y)|gi (xi , yi ) ≤ 0, i = 1, 2, . . . , n}, initialize
pop si ze chromosomes V k = (xk, yk) = (xk

1 , xk
2 , . . . , xk

n , yk
1 , yk

2 , . . . , yk
n ),

k = 1, 2, . . . , pop si ze, which denote the locations of all the facilities.
Step 2. Calculate the objective values U k for all chromosomes V k, k = 1, 2,

. . . , pop si ze, where the simplex method is used to solve (5) to get the optimal
cost C(xk, yk,�−1

1 (α), . . . , �−1
n (α)).

Step 3. Compute the fitness of all chromosomes V k , k = 1, 2, . . . , pop si ze. The
rank-based evaluation function is defined as

Eval(V k) = β(1 − β)k−1, k = 1, 2, . . . , pop si ze

where the chromosomes V 1, V 2, . . . , V pop si ze are assumed to have been
rearranged from good to bad according to their objective values U k and β ∈
(0, 1) is a parameter in the genetic system.

Step 4. Select the chromosomes for a new population. The selection process is based
on spinning the roulette wheel characterized by the fitness of all chromosomes
for pop si ze times, and each time we select a single chromosome. Thus we
update the pop si ze chromosomes V k , k = 1, 2, . . . , pop si ze.

Step 5. Update the chromosomes V k, k = 1, 2, . . . , pop si ze by crossover oper-
ation. We define a parameter Pc of a genetic system as the probability of
crossover. This probability gives us the expected number Pc · pop si ze chro-
mosomes undergoing the crossover operation.

Step 6. Update the chromosomes V k , k = 1, 2, . . . , pop si ze by mutation operation.
The parameter Pm is the probability of mutation, which gives us the expected
number of Pm · pop si ze chromosomes undergoing the mutation operations.

Step 7. Repeat the second to the sixth steps for a given number of cycles.
Step 8. Report the best chromosome V ∗ = (x∗, y∗) as the optimal locations.

5 A numerical example

Consider a company that wishes to locate four new facilities in a square region
[0, 100]× [0, 100], whose capacities are 100, 110, 120 and 130, respectively. Assume
that there are 20 customers whose demands are all zigzag uncertain variables. The
location (a j , b j ) and the uncertain demand ξ j of the customer j are given in Table 1
for j = 1, 2, . . . , 20.



M. Wen et al.

Table 1 Location and uncertain demand

Customer j Location Demand Customer j Location Demand

1 (28, 42) Z(14, 15, 17) 11 (14, 78) Z(13, 15, 17)

2 (18, 50) Z(13, 14, 18) 12 (90, 36) Z(11, 14, 17)

3 (74, 34) Z(12, 14, 16) 13 (78, 20) Z(13, 15, 19)

4 (74, 6) Z(17, 18, 20) 14 (24, 52) Z(11, 13, 16)

5 (70, 18) Z(21, 23, 26) 15 (54, 6) Z(20, 24, 26)

6 (72, 98) Z(24, 26, 28) 16 (62, 60) Z(16, 18, 23)

7 (60, 50) Z(13, 15, 16) 17 (98, 14) Z(18, 19, 22)

8 (36, 40) Z(12, 14, 17) 18 (36, 58) Z(13, 14, 17)

9 (12, 4) Z(13, 15, 17) 19 (38, 88) Z(16, 17, 20)

10 (18, 20) Z(22, 24, 26) 20 (32, 54) Z(19, 22, 25)

It follows from the α-cost minimization model (3) that the company’s problem can
be formulated as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x,y,z

4∑
i=1

20∑
j=1

zi j

√
(xi − a j )2 + (yi − b j )2

subject to :

4∑
i=1

zi j ≥ �−1
j (α), j = 1, 2, . . . , 20

20∑
j=1

z1 j ≤ 100

20∑
j=1

z2 j ≤ 110

20∑
j=1

z3 j ≤ 120

20∑
j=1

z4 j ≤ 130

zi j ≥ 0, i = 1, 2, 3, 4, j = 1, 2, . . . , 20
0 ≤ xi ≤ 100, i = 1, 2, 3, 4
0 ≤ yi ≤ 100, i = 1, 2, 3, 4.

(6)

In order to solve the model (6), the hybrid intelligent algorithm was run with 1,000
generations. The results for different α are given in Table 2, which shows that the
minimal α-cost increases as the confidence level α increases.

When the confidence level α is taken as 0.9, the locations of customers and the
optimal locations of the facilities are shown in Fig. 1, in which the points represent
the locations of the customers and the diamonds represent the optimal locations of the
facilities.
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Table 2 The results of the
example with different α

Confidence
level α

Locations of facilities Minimal
α-cost

0.6 (78, 20), (62, 61), (21, 17), (29, 53) 5,781

0.7 (78, 20), (62, 60), (21, 16), (31, 53) 5,939

0.8 (78, 20), (61, 65), (21, 16), (29, 53) 6,010

0.9 (78, 20), (62, 60), (21, 17), (29, 53) 6,251

0 10 20 30 40 50 60 70 80 90 100

0101

20

30

40
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80

90

100

Fig. 1 Locations of customers and facilities, where cdot denote a customer and diamond denote a facility

6 Conclusion

This paper mainly proposed an α-cost minimization model for facility location-
allocation problem with uncertain demands. An equivalent crisp model was obtained,
based on which a hybrid intelligent algorithm integrating simplex method and genetic
algorithm was designed. A numerical experiment was given to illustrate the hybrid
intelligent algorithm.

Acknowledgments This work was supported by National Natural Science Foundation of China (Nos.
71201005, 71371019, 61104132), and in part by the Program for New Century Excellent Talents in Uni-
versity (No. NCET-12-0026).

References

Badri, M. A. (1999). Combining the analytic hierarchy process and goal programming for global facility
location-allocation problem. International Journal of Production Economic, 62, 237–248.



M. Wen et al.

Charnes, A., & Cooper, W. (1961). Management models and industrial applications of linear programming.
New York: Wiley.

Cooper, L. (1963). Location-allocation problems. Operational Research, 11, 331–344.
Darzentas, J. (1987). A discrete location model with fuzzy accessibility measures. Fuzzy Sets and Systems,

23, 149–154.
Gao, Y. (2012). Uncertain models for single facility location problems on networks. Applied Mathematical

Modelling, 36(6), 2592–2599.
Gong, D., Gen, M., Xu, W., & Yamazaku, G. (1995). Hybrid evolutionary method for obstacle location-

allocation problem. International Journal of Computers and Industrial Engineering, 29, 525–530.
Hodey, M., Melachrinoudis, E., & Wu, X. (1997). Dynamic expansion and location of an airport: A multiple

objective approach. Transportation Research: Part A-Policy and Practice, 31, 403–417.
Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica,

47(2), 263–292.
Logendran, R., & Terrell, M. P. (1988). Uncapacitated plant location-allocation problems with price sensitive

stochastic demands. Computers and Operations Research, 15, 189–198.
Li, X., & Liu, B. (2009). Hybrid logic and uncertain logic. Journal of Uncertain Systems, 3(2), 83–94.
Liu, B. (2007). Uncertainty theory (2nd ed.). Berlin: Springer.
Liu, B. (2008). Fuzzy process, hybrid process and uncertain process. Journal of Uncertain Systems, 2(1),

3–16.
Liu, B. (2009). Some research problems in uncertainty theory. Journal of Uncertain Systems, 3(1), 3–10.
Liu, B. (2009). Theory and practice of uncertain programming (2nd ed.). Berlin: Springer.
Liu, B. (2010). Uncertainty theory: A branch of mathematics for modeling human uncertainty. Berlin:

Springer.
Liu, B. (2010). Uncertain risk analysis and uncertain reliability analysis. Journal of Uncertain Systems,

4(3), 163–170.
Liu B. & Chen X. W. (2013). Uncertain multi-objective programming and uncertain goal programming,

http://orsc.edu.cn/online/131020.
Liu, B., & Yao, K. (2012). Uncertain multilevel programming: Algorithm and application, http://orsc.edu.

cn/online/120114.
Liu, Y. H., & Ha, M. H. (2010). Expected value of function of uncertain variables. Journal of Uncertain

Systems, 13, 181–186.
Murray, A. T., & Church, R. L. (1996). Applying simulated annealing to location-planning models. Journal

of Heuristics, 2, 31–53.
Murtagh, B. A., & Niwattisyawong, S. R. (1982). Efficient method for the muti-depot location em dash

allocation problem. Journal of the Operational Research Society, 33, 629–634.
Qin, Z., & Kar, S. (2013). Single-period inventory problem under uncertain environment. Applied Mathe-

matics and Computation, 219(18), 9630–9638.
Wang, G., Tang, W., & Zhao, R. (2013). An uncertain price discrimination model in labor market. Soft

Computing, 17(4), 579–585.
Wen, M., & Iwamura, K. (2008). Fuzzy facility location-allocation problem under the Hurwicz criterion.

European Journal of Operational Research, 184, 627–635.
Yao, K., & Ji, X. (2014). Uncertain decision making and its application to portfolio selection problem.

International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 22(1), to be published.
Zeng, Z., Wen, M., & Kang, R. (2013). Belief reliability: A new metrics for products’ reliability. Fuzzy

Optimization and Decision Making, 12(1), 15–27.
Zhou, J., & Liu, B. (2003). New stochastic models for capacitated location-allocation problem. Computers

& Industrial Engineering, 4, 111–125.
Zhou, J., & Liu, B. (2007). Modeling capacitated location-allocation problem with fuzzy demands. Com-

puters & Industrial Engineering, 53(3), 454–468.



Research Article
Data Envelopment Analysis with Uncertain Inputs and Outputs

Meilin Wen,1,2 Linhan Guo,1,2 Rui Kang,1,2 and Yi Yang1,2

1 Science and Technology on Reliability and Environmental Engineering Laboratory, Beijing 100191, China
2 School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China

Correspondence should be addressed to Linhan Guo; linhanguo@buaa.edu.cn

Received 27 June 2014; Accepted 15 July 2014; Published 5 August 2014

Academic Editor: Xiang Li

Copyright © 2014 Meilin Wen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Data envelopment analysis (DEA), as a useful management and decision tool, has been widely used since it was first invented
by Charnes et al. in 1978. On the one hand, the DEA models need accurate inputs and outputs data. On the other hand, in
many situations, inputs and outputs are volatile and complex so that they are difficult to measure in an accurate way. The conflict
leads to the researches of uncertain DEA models. This paper will consider DEA in uncertain environment, thus producing a new
model based on uncertain measure. Due to the complexity of the new uncertain DEA model, an equivalent deterministic model is
presented. Finally, a numerical example is presented to illustrate the effectiveness of the uncertain DEA model.

1. Introduction

Data envelopment analysis is a mathematical programming
technique that measures the relative efficiency of decision
making units with multiple inputs and outputs, which was
initialized by Charnes et al. [1]. This was followed by variety
of theory research work, including Banker et al. [2], Charnes
et al. [3], Petersen [4], and Tone [5]. More DEA papers can
refer to Seiford [6] in which 500 references are documented.

The original DEAmodels assume that inputs and outputs
are measured by exact values. However, in many situations,
such as in a manufacturing system, a production process, or
a service system, inputs and outputs are volatile and complex
so that they are difficult to measure in an accurate way. Thus
many researchers tried to model DEAwith various uncertain
theories. Probability theory is the earliest theory which was
used to establish the stochastic DEA models. Sengupta [7]
generalized the stochastic DEA model using the expected
value. Banker [8] incorporated statistical elements into DEA,
thus developing a statisticalmethod.Many papers [9–13] have
employed the chance-constrained programming to DEA in
order to accommodate stochastic variations in data. Fuzzy
theory is another theory which was used to deal with the
uncertainty in DEA. As one of the DEA initiators, Cooper et
al. [14–16] introduced how to deal with imprecise data such as

bounded data, ordinal data, and ratio bounded data in DEA.
Kao and Liu [17] developed amethod to find themembership
functions of the fuzzy efficiency scores when some inputs
or inputs are fuzzy numbers. Entani et al. [18] proposed a
DEA model with an interval efficiency by the pessimistic
and the optimistic values. Many researchers have introduced
possibility measure [19] into DEA [20, 21].

A lot of surveys showed that human uncertainty does
not behave like fuzziness. For example, we say “the input is
about 10.” Generally, we employ fuzzy variable to describe
the concept of “about 10;” then there exists a membership
function, such as a triangular one (9, 10, 11). Based on
this membership function, we can obtain that “the input is
exactly 10” with possibility measure 1. On the other hand,
the opposite event of “not exactly 10” has the same possibility
measure. The conclusion that “not 10” and “exactly 10” have
the same possibility measure is not appropriate.This inspired
Liu [22] to found an uncertainty theory which has become
a branch of axiomatic mathematics for modeling human
uncertainty. This paper will apply the uncertainty theory to
DEA to deal with human uncertainty, thus producing some
uncertain DEA models.

In this paper, we will assume the inputs and outputs are
uncertain variables and propose some uncertain DEA mod-
els. The rest of this paper is organized as follows. Section 2
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will introduce some basic concepts and properties about
uncertain variables. Then an uncertain DEA model as well
as its equivalent crisp model will be presented in Section 3.
Finally, a numerical example will be given to illustrate the
uncertain DEA model in Section 4.

2. Preliminaries

Uncertainty theory was founded by Liu [22] in 2007 and
refined by Liu [23] in 2010. As extensions of uncertainty the-
ory, uncertain process, and uncertain differential equations
[24], uncertain calculus [25] were proposed. Besides, uncer-
tain programming was first proposed by Liu [26] in 2009,
which wants to deal with the optimal problems involving
uncertain variable. This work was followed by an uncertain
multiobjective programming, an uncertain goal program-
ming [27], and an uncertain multilevel programming [28].
Since that, uncertainty theory was used to solve variety of
real optimal problems, including finance [29–31], reliability
analysis [32, 33], graph [34, 35], and train scheduling [36,
37]. In this section, we will state some basic concepts and
results on uncertain variables.These results are crucial for the
remainder of this paper.

Let Γ be a nonempty set, and let Ł be a 𝜎-algebra overΓ. Each element Λ ∈ Ł is assigned a number 𝑀{Λ} ∈[0, 1]. In order to ensure that the number 𝑀{Λ} has cer-
tain mathematical properties, Liu [22] presented the four
axioms.

Axiom 1. 𝑀{Γ} = 1 for the universal set Γ.
Axiom 2. 𝑀{Λ} + 𝑀{Λ𝑐} = 1 for any event Λ.
Axiom 3. For every countable sequence of events Λ 1, Λ 2, . . .,
we have

𝑀{∞⋃
𝑖=1

Λ 𝑖} ≤ ∞∑
𝑖=1

𝑀{Λ 𝑖} . (1)

Axiom 4. Let (Γ𝑘, Ł𝑘,𝑀𝑘) be uncertainty spaces for 𝑘 =1, 2, . . .. Then the product uncertain measure 𝑀 is an uncer-
tain measure satisfying

𝑀{ ∞∏
𝑘=1

Λ 𝑘} = ∞⋀
𝑘=1

𝑀𝑘 {Λ 𝑘} , (2)

where Λ 𝑘 are arbitrarily chosen events from Ł𝑘 for 𝑘 =1, 2, . . ., respectively.
If the set function 𝑀 satisfies the first three axioms, it is

called an uncertain measure.

Definition 1 (see Liu [22]). Let Γ be a nonempty set, let
Ł be a 𝜎-algebra over Γ, and let 𝑀 be an uncertain
measure. Then the triplet (Γ, Ł,𝑀) is called an uncertainty
space.

Definition 2 (see Liu [22]). An uncertain variable 𝜉 is a
measurable function from an uncertainty space (Γ, Ł,𝑀) to

the set of real numbers; that is, for any Borel set 𝐵 of real
numbers, the set

{𝜉 ∈ 𝐵} = {𝛾 ∈ Γ | 𝜉 (𝛾) ∈ 𝐵} (3)

is an event.

Definition 3 (see Liu [22]). The uncertainty distributionΦ of
an uncertain variable 𝜉 is defined by

Φ (𝑥) = 𝑀 {𝜉 ≤ 𝑥} (4)

for any real number 𝑥.
Example 4. The linear uncertain variable 𝜉 ∼ L(𝑎, 𝑏) has an
uncertainty distribution

Φ (𝑥) =
{{{{{{{{{{{{{

0, if 𝑥 ≤ 𝑎,
(𝑥 − 𝑎)(𝑏 − 𝑎) , if 𝑎 ≤ 𝑥 ≤ 𝑏,
1, if 𝑥 ≥ 𝑏.

(5)

Example 5. An uncertain variable 𝜉 is called zigzag if it has a
zigzag uncertainty distribution

Φ (𝑥) =

{{{{{{{{{{{{{{{{{{{{{{{

0, if 𝑥 ≤ 𝑎,
(𝑥 − 𝑎)2 (𝑏 − 𝑎) , if 𝑎 ≤ 𝑥 ≤ 𝑏,
(𝑥 + 𝑐 − 2𝑏)2 (𝑐 − 𝑏) , if 𝑏 ≤ 𝑥 ≤ 𝑐,
1, if 𝑥 ≥ 𝑐

(6)

denoted byZ(𝑎, 𝑏, 𝑐), where 𝑎, 𝑏, 𝑐 are real numbers with 𝑎 <𝑏 < 𝑐.
Definition 6 (see Liu [25]). The uncertain variables𝜉1, 𝜉2, . . . , 𝜉𝑛 are said to be independent if

𝑀{ 𝑛⋂
𝑖=1

(𝜉𝑖 ∈ 𝐵𝑖)} = 𝑛⋀
𝑖=1

𝑀{𝜉𝑖 ∈ 𝐵𝑖} (7)

for any Borel sets 𝐵1, 𝐵2, . . . , 𝐵𝑛.
Definition 7 (see Liu [23]). An uncertainty distribution Φ
of an uncertain variable 𝜉 is said to be regular if its inverse
function Φ−1(𝛼) exists and is unique for each 𝛼 ∈ (0, 1). In
this case, the inverse function Φ−1(𝛼) is called the inverse
uncertainty distribution of 𝜉.
Example 8. The inverse uncertainty distribution of a zigzag
uncertain variableZ(𝑎, 𝑏, 𝑐) is

Φ−1 (𝛼) = {(1 − 2𝛼) 𝑎 + 2𝛼𝑏, if 𝛼 ≤ 0.5,(2 − 2𝛼) 𝑏 + (2𝛼 − 1) 𝑐, if 𝛼 > 0.5. (8)

Theorem 9 (see Liu [23]). Let 𝜉1, 𝜉2, . . . , 𝜉𝑛 be independent
uncertain variables with regular uncertainty distributions
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Φ1, Φ2, . . . , Φ𝑛, respectively. If 𝑓 is a strictly increasing func-
tion, then

𝜉 = 𝑓 (𝜉1, 𝜉2, . . . , 𝜉𝑛) (9)

is an uncertain variable with inverse uncertainty distribution

Ψ−1 (𝛼) = 𝑓 (Φ−11 (𝛼) , Φ−12 (𝛼) , . . . , Φ−1𝑛 (𝛼)) . (10)

Example 10. Let 𝜉 be an uncertain variable with regular
uncertainty distribution Φ. Since 𝑓(𝑥) = 𝑎𝑥 + 𝑏 is a strictly
increasing function for any constants 𝑎 > 0 and 𝑏, the inverse
uncertainty distribution of 𝑎𝜉 + 𝑏 is

Ψ−1 (𝛼) = 𝑎Φ−11 (𝛼) + 𝑏. (11)

Example 11. Let 𝜉1, 𝜉2, . . . , 𝜉𝑛 be independent uncertain vari-
ables with regular uncertainty distributions Φ1, Φ2, . . . , Φ𝑛,
respectively. Since

𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑥1 + 𝑥2 + ⋅ ⋅ ⋅ + 𝑥𝑛 (12)

is a strictly increasing function, the sum

𝜉 = 𝜉1 + 𝜉2 + ⋅ ⋅ ⋅ + 𝜉𝑛 (13)

is an uncertain variable with inverse uncertainty distribution

Ψ−1 (𝛼) = Φ−11 (𝛼) + Φ−12 (𝛼) + ⋅ ⋅ ⋅ + Φ−1𝑛 (𝛼) . (14)

Theorem 12 (see Liu [23]). Assume the constraint function𝑔(𝑥, 𝜉1, 𝜉2, . . . , 𝜉𝑛) is strictly increasing with respect
to 𝜉1, 𝜉2, . . . , 𝜉𝑘 and strictly decreasing with respect to𝜉𝑘+1, 𝜉𝑘+2, . . . , 𝜉𝑛. If 𝜉1, 𝜉2, . . . , 𝜉𝑛 are independent uncertain
variables with uncertainty distributions Φ1, Φ2, . . . , Φ𝑛,
respectively, then the chance constraint

𝑀{𝑔 (𝑥, 𝜉1, 𝜉2, . . . , 𝜉𝑛) ≤ 0} ≥ 𝛼 (15)

holds if and only if

𝑔 (𝑥,Φ−11 (𝛼) , . . . , Φ−1𝑘 (𝛼) , Φ−1𝑘+1 (1 − 𝛼) , . . . , Φ−1𝑛 (1 − 𝛼))
≤ 0.

(16)

3. DEA Model

In many situations, inputs and outputs are volatile and
complex so that they are difficult to measure in an accurate
way. This inspired many researchers to apply probability to
DEA. As we know, probability or statistics needs a large
amount of historical data. In the vast majority of real cases,
the sample size is too small (even no sample) to estimate a
probability distribution.Then we have to invite some domain
experts to evaluate their degree of belief that each event will
occur. This section will give some researches to empirical
uncertain DEA using the theory introduced in Section 2.The
new symbols and notations are given as follows:

DMU𝑖: the 𝑖th DMU, 𝑖 = 1, 2, . . . , 𝑛;

DMU0: the target DMU;
𝑥𝑘 = (𝑥𝑘1, 𝑥𝑘2, . . . , 𝑥𝑘𝑝): the uncertain inputs vector of
DMU𝑘, 𝑘 = 1, 2, . . . , 𝑛;
Φ𝑘𝑖(𝑥): the uncertainty distribution of 𝑥𝑘𝑖, 𝑘 =1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑝;
𝑥0 = (𝑥01, 𝑥02, . . . , 𝑥0𝑝): the inputs vector of the target
DMU0;Φ0𝑖(𝑥): the uncertainty distribution of 𝑥0𝑖, 𝑖 =1, 2, . . . , 𝑝;
𝑦𝑘 = (𝑦𝑘1, 𝑦𝑘2, . . . , 𝑦𝑘𝑞): the uncertain outputs vector
of DMU𝑘, 𝑘 = 1, 2, . . . , 𝑛;
Ψ𝑘𝑗(𝑥): the uncertainty distribution of 𝑦𝑘𝑗, 𝑘 =1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑞;
𝑦0 = (𝑦01, 𝑦02, . . . , 𝑦0𝑞): the outputs vector of the
target DMU0;Ψ0𝑗(𝑥): the uncertainty distribution of 𝑦0𝑗, 𝑗 =1, 2, . . . , 𝑞.

3.1. Uncertainty Distributions of Inputs and Outputs. Liu
and Ha [38] proposed a questionnaire survey for collecting
expert’s experimental data. It is based on expert’s experimen-
tal data rather than historical data. The starting point is to
invite one expert who is asked to complete a questionnaire
about themeaning of an uncertain input (output) 𝜉 like “How
many is the input (output).”

We first ask the domain expert to choose a possible value𝑥 that the uncertain input 𝜉 may take and then quiz him,

“How likely is 𝜉 less than or equal to 𝑥?”
Denote the expert’s belief degree by 𝛼. An expert’s

experimental data (𝑥, 𝛼) is thus acquired from the domain
expert.

Repeating the above process, we can obtain the following
expert’s experimental data:

(𝑥1, 𝛼1) , (𝑥2, 𝛼2) , . . . , (𝑥𝑛, 𝛼𝑛) (17)

that meet the following consistence condition (perhaps after
a rearrangement):

𝑥1 < 𝑥2 < ⋅ ⋅ ⋅ < 𝑥𝑛, 0 ≤ 𝛼1 ≤ 𝛼2 ≤ ⋅ ⋅ ⋅ 𝛼𝑛 ≤ 1. (18)

Based on those expert’s experimental data, Liu and Ha
[38] suggested an empirical uncertainty distribution,

Φ (𝑥)

=
{{{{{{{{{

0, if 𝑥 ≤ 𝑥1,
𝛼𝑖 + (𝛼𝑖+1 − 𝛼𝑖) (𝑥 − 𝑥𝑖)𝑥𝑖+1 − 𝑥𝑖 , if 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1, 1 ≤ 𝑖 < 𝑛,
1, if 𝑥 > 𝑥𝑛.

(19)

Assume there are 𝑚 domain experts and each produces
an uncertainty distribution. Then we may get 𝑚 uncertainty
distributions Φ1(𝑥), Φ2(𝑥), . . . , Φ𝑚(𝑥). The Delphi method
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was originally developed in the 1950s by the RAND Cor-
poration based on the assumption that group experience is
more valid than individual experience.Wang et al. [39] recast
the Delphi method as a process to determine the uncertainty
distribution. The main steps are listed as follows.

Step 1. The 𝑚 domain experts provide their expert’s experi-
mental data,

(𝑥𝑖𝑗, 𝛼𝑖𝑗) , 𝑗 = 1, 2, . . . , 𝑛𝑖, 𝑖 = 1, 2, . . . , 𝑚. (20)

Step 2. Use the 𝑖th expert’s experimental data(𝑥𝑖1, 𝛼𝑖1), (𝑥𝑖2, 𝛼𝑖2), . . . , (𝑥𝑖𝑛𝑖 , 𝛼𝑖𝑛𝑖) to generate the 𝑖th expert’s
uncertainty distributionΦ𝑖.
Step 3. ComputeΦ(𝑥) = 𝑤1Φ1(𝑥)+𝑤2Φ2(𝑥)+⋅ ⋅ ⋅+𝑤𝑚Φ𝑚(𝑥),
where 𝑤1, 𝑤2, . . . , 𝑤𝑚 are convex combination coefficients.

Step 4. If |𝛼𝑖𝑗 − Φ(𝑥𝑖𝑗)| are less than a given level 𝜀 > 0, then
go to Step 5. Otherwise, the 𝑖th expert receives the summary
(Φ and reasons) and then provides a set of revised expert’s
experimental data. Go to Step 2.

Step 5. The last Φ is the uncertainty distribution of the input
(output).

3.2. Uncertain DEAModel. Similar to traditional DEAmodel
[3], the objective of the uncertain DEA model is to max-
imize the total slacks in inputs and outputs subject to the
constraints. Then the uncertain DEA model can be given as
follows:

max
𝑝∑
𝑖=1

𝑠−𝑖 +
𝑞∑
𝑗=1

𝑠+𝑗

subject to: 𝑀{ 𝑛∑
𝑘=1

𝑥𝑘𝑖𝜆𝑘 ≤ 𝑥0𝑖 − 𝑠−𝑖 } ≥ 𝛼, 𝑖 = 1, 2, . . . , 𝑝,

𝑀{ 𝑛∑
𝑘=1

𝑦𝑘𝑗𝜆𝑘 ≥ 𝑦0𝑗 + 𝑠+𝑗} ≥ 𝛼, 𝑗 = 1, 2 . . . , 𝑞,
𝑛∑
𝑘=1

𝜆𝑘 = 1,
𝜆𝑘 ≥ 0, 𝑘 = 1, 2, . . . , 𝑛,
𝑠−𝑖 ≥ 0, 𝑖 = 1, 2 . . . , 𝑝,
𝑠+𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑞.

(21)

Definition 13 (𝛼-efficiency). DMU0 is 𝛼-efficient if 𝑠−∗𝑖 and𝑠+∗𝑗 are zero for 𝑖 = 1, 2, . . . , 𝑝 and 𝑗 = 1, . . . , 𝑞, where 𝑠−∗𝑖
and 𝑠+∗𝑗 are optimal solutions of (21).

Since the uncertain measure is involved, this definition is
different from traditional efficiency definition. For instance,
as determined by the choice of 𝛼, there is a risk that DMU0

will not be efficient even when the condition of Definition 13
is satisfied.

Since 𝑗 = 0 is one of the DMU𝑗, we can always get a
solution with 𝜆0 = 1, 𝜆𝑗 = 0 (𝑗 ̸= 0), and all slacks zero.
Thus this uncertain DEA model has feasible solution and the
optimal value 𝑠−∗𝑖 = 𝑠+∗𝑗 = 0 for all 𝑖, 𝑗.
3.3. Deterministic Model. Model (21) is an uncertain pro-
gramming model, which is too complex to compute directly.
This section will give its equivalent crisp model to simplify
the computation process.

Theorem 14. Assume that 𝑥1𝑖, 𝑥2𝑖, . . . , 𝑥𝑛𝑖 are independent
uncertain inputs with uncertainty distributionΦ1𝑖, Φ2𝑖, . . . , Φ𝑛𝑖 for each 𝑖, 𝑖 = 1, 2, . . . , 𝑝, and 𝑦1𝑖, 𝑦2𝑖, . . . , 𝑦𝑛𝑖
are independent uncertain outputs with uncertainty
distribution Ψ1𝑗, Ψ2𝑗, . . . , Ψ𝑛𝑗 for each 𝑗, 𝑗 = 1, 2, . . . , 𝑞.
Then

𝑀{ 𝑛∑
𝑘=1

𝑥𝑘𝑖𝜆𝑘 ≤ 𝑥0𝑖 − 𝑠−𝑖 } ≥ 𝛼, 𝑖 = 1, 2, . . . , 𝑝,

𝑀{ 𝑛∑
𝑘=1

𝑦𝑘𝑗𝜆𝑘 ≥ 𝑦0𝑗 + 𝑠+𝑗} ≥ 𝛼, 𝑗 = 1, 2 . . . , 𝑞
(22)

holds if and only if

𝑛∑
𝑘=1,𝑘 ̸=0

𝜆𝑘Φ−1𝑘𝑖 (𝛼) + 𝜆0Φ−10𝑖 (1 − 𝛼) ≤ Φ−10𝑖 (1 − 𝛼) − 𝑠−𝑖 ,
𝑖 = 1, 2, . . . , 𝑝,

𝑛∑
𝑘=1,𝑘 ̸=0

𝜆𝑘Ψ−1𝑘𝑗 (1 − 𝛼) + 𝜆0Ψ−10𝑗 (𝛼) ≥ Ψ−10𝑗 (𝛼) + 𝑠−𝑗 ,
𝑗 = 1, 2, . . . , 𝑞.

(23)

Proof. Without loss of generality, let 𝑖 = 1 and 𝑥0 = 𝑥1; then
we will consider the equation

𝑀{ 𝑛∑
𝑘=1

𝑥𝑘1𝜆𝑘 ≤ 𝑥11 − 𝑠−𝑖 } ≥ 𝛼. (24)

Rewrite (24) as

𝑀{ 𝑛∑
𝑘=2

𝑥𝑘1𝜆𝑘 − (1 − 𝜆1) 𝑥11 ≤ −𝑠−𝑖 } ≥ 𝛼. (25)

Since −(1 − 𝜆1)𝑥11 is an uncertain variable which is
decreasing with respect to 𝑥11, its inverse uncertainty distri-
bution is

Υ−111 (𝛼) = − (1 − 𝜆1)Φ−111 (1 − 𝛼) , 0 < 𝛼 < 1. (26)

For each 2 ≤ 𝑘 ≤ 𝑛, 𝑥𝑘1𝜆𝑘 is an uncertain variable whose
inverse uncertainty distribution is

Υ−1𝑘1 (𝛼) = 𝜆𝑘Φ−1𝑘1 (𝛼) , 0 < 𝛼 < 1. (27)
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Table 1: DMUs with two uncertain inputs and two uncertain outputs.

DMU𝑖 1 2 3 4 5
Input 1 Z(3.5, 4.0, 4.5) Z(2.9, 2.9, 2.9) Z(4.4, 4.9, 5.4) Z(3.4, 4.1, 4.8) Z(5.9, 6.5, 7.1)
Input 2 Z(2.9, 3.1, 3.3) Z(1.4, 1.5, 1.6) Z(3.2, 3.6, 4.0) Z(2.1, 2.3, 2.5) Z(3.6, 4.1, 4.6)
Output 1 Z(2.4, 2.6, 2.8) Z(2.2, 2.2, 2.2) Z(2.7, 3.2, 3.7) Z(2.5, 2.9, 3.3) Z(4.4, 5.1, 5.8)
Output 2 Z(3.8, 4.1, 4.4) Z(3.3, 3.5, 3.7) Z(4.3, 5.1, 5.9) Z(5.5, 5.7, 5.9) Z(6.5, 7.4, 8.3)

Table 2: Results of evaluating the DMUs with 𝛼 = 0.6.
DMUs (𝜆∗1 , 𝜆∗2 , 𝜆∗3 , 𝜆∗4 , 𝜆∗5)

𝑝∑
𝑖=1

𝑠−∗𝑖 + 𝑞∑
𝑗=1

𝑠+∗𝑗 The result of evaluating

DMU1 (0, 0.25, 0, 0.75, 0) 1.89 Inefficiency
DMU2 (0, 1, 0, 0, 0) 0 Efficiency
DMU3 (0, 0, 0, 0.78, 0.22) 1.54 Inefficiency
DMU4 (0, 0, 0, 1, 0) 0 Efficiency
DMU5 (0, 0, 0, 0, 1) 0 Efficiency

It follows from the operational law that the inverse
uncertainty distribution of the sum∑𝑛𝑘=2 𝑥𝑘1𝜆𝑘 − (1 − 𝜆1)𝑥11
is

Υ−1 (𝛼) = 𝑛∑
𝑘=1

Υ−121 (𝛼)

= 𝑛∑
𝑘=2

𝜆𝑘Φ−1𝑘1 (𝛼) − (1 − 𝜆1)Φ−111 (1 − 𝛼) , 0 < 𝛼 < 1.
(28)

From which we may derive the result immediately for 𝑖 = 1
and 𝑥0 = 𝑥1. Similarly, we can get other results.

Following Theorem 14, the uncertain DEA model can be
converted to the crisp model as follows:

max
𝑝∑
𝑖=1

𝑠−𝑖 +
𝑞∑
𝑗=1

𝑠+𝑗
subject to:

𝑛∑
𝑘=1,𝑘 ̸=0

𝜆𝑘Φ−1𝑘𝑖 (𝛼) + 𝜆0Φ−10𝑖 (1 − 𝛼)
≤ Φ−10𝑖 (1 − 𝛼) − 𝑠−𝑖 , 𝑖 = 1, 2, . . . , 𝑝,

𝑛∑
𝑘=1,𝑘 ̸=0

𝜆𝑘Ψ−1𝑘𝑗 (1 − 𝛼) + 𝜆0Ψ−10𝑗 (𝛼)
≥ Ψ−10𝑗 (𝛼) + 𝑠+𝑗 , 𝑗 = 1, 2, . . . , 𝑞,

𝑛∑
𝑘=1

𝜆𝑘 = 1,
𝜆𝑘 ≥ 0, 𝑘 = 1, 2, . . . , 𝑛,
𝑠−𝑖 ≥ 0, 𝑖 = 1, 2 . . . , 𝑝,
𝑠+𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑞

(29)

which is a linear programming model. Thus it can be easily
solved by many traditional methods.

4. A Numerical Example

This example wants to illustrate the uncertain DEA model.
For simplicity, we will only consider five DMUs with two
inputs and two outputs which are all zigzag uncertain vari-
ables denoted by Z(𝑎, 𝑏, 𝑐). Table 1 gives the information of
the DMUs.

For illustration, let DMU1 be the target DMU; then the
uncertain DEA model (29) can be written as

max 𝑠−1 + 𝑠−2 + 𝑠+1 + 𝑠+2
subject to:

5∑
𝑘=2

𝜆𝑘Φ−1𝑘1 (𝛼) + 𝜆1Φ−111 (1 − 𝛼)
≤ Φ−111 (1 − 𝛼) − 𝑠−1 ,

5∑
𝑘=2

𝜆𝑘Φ−1𝑘2 (𝛼) + 𝜆1Φ−112 (1 − 𝛼)
≤ Φ−112 (1 − 𝛼) − 𝑠−2 ,

5∑
𝑘=2

𝜆𝑘Ψ−1𝑘1 (1 − 𝛼) + 𝜆1Ψ−111 (𝛼) ≥ Ψ−111 (𝛼) + 𝑠+1 ,
5∑
𝑘=2

𝜆𝑘Ψ−1𝑘2 (1 − 𝛼) + 𝜆1Ψ−112 (𝛼) ≥ Ψ−112 (𝛼) + 𝑠+2 ,
5∑
𝑘=1

𝜆𝑘 = 1,
𝜆𝑘 ≥ 0, 𝑘 = 1, 2, . . . , 5,
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Table 3: Results of evaluating the DMUs with different confidence level 𝛼.
𝛼 DMU1 DMU2 DMU3 DMU4 DMU5

0.5 Inefficiency Efficiency Inefficiency Efficiency Efficiency
0.6 Inefficiency Efficiency Inefficiency Efficiency Efficiency
0.7 Inefficiency Efficiency Inefficiency Efficiency Efficiency
0.8 Inefficiency Efficiency Efficiency Efficiency Efficiency
0.9 Efficiency Efficiency Efficiency Efficiency Efficiency

𝑠−1 ≥ 0,
𝑠−2 ≥ 0,
𝑠+1 ≥ 0,
𝑠+2 ≥ 0.

(30)

Table 2 shows the results of evaluating DMUs with con-
fidence level 𝛼 = 0.6. The results can be interpreted in the
following way: DMU1 and DMU3 are inefficient, whereas
DMU2, DMU4, and DMU5 are efficient. Moreover, DMU3
is more efficient than DMU1 from the total slacks ∑𝑝𝑖=1 𝑠−∗𝑖 +∑𝑞𝑗=1 𝑠+∗𝑗 , since they are both inefficient.

Uncertain efficiencies obtained from model (30) for
different confidence levels 𝛼 are shown in Table 3. DMU1 is
inefficient at all confidence levels, whereas DMU2, DMU4,
and DMU5 are always efficient at all levels. It can be seen that
the number of the efficient DMUs is affected by the confi-
dence level 𝛼. The higher the confidence level 𝛼 is, the bigger
the number of efficient DMUs is. This phenomena indicate
that uncertain DEA is more complex than the traditional
DEA because of the inherent uncertainty contained in inputs
and outputs.

5. Conclusion

Due to its widely practical used background, data envelop-
ment analysis (DEA) has become a pop area of research.
Since the data cannot be preciselymeasured in some practical
cases, many papers have been published when the inputs and
outputs are uncertain. This paper has given some researches
to uncertain DEA model. A new DEA model as well as its
equivalent deterministic model was presented. For illustra-
tion, a numerical example was designed.
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The traditional single period inventory problem assumes that the market demand is a
random variable. However, as an empirical or subjective estimation, market demand is
better to be regarded as an uncertain variable. This paper is concerning with single
period inventory problem under two main assumptions that (i) the market demand is an
uncertain variable and (ii) a setup cost and an initial stock exist. Under the framework
of uncertainty theory, the optimal inventory policy for uncertain single period inventory

problem with an initial stock and a setup cost is derived, which is of (s, S) type. Also,
some expansions are obtained.

Keywords: Inventory; (s, S) policy; uncertainty theory.

1. Introduction

The single period inventory problem is to find an optimal inventory policy which

maximizes the expected profit, or equivalently minimizes the expected cost. The

single period inventory problem has two significant assumptions: (i) the market

∗Corresponding author.
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demand during the period is non-deterministic, and (ii) items can only be ordered

or produced in batch at the beginning of the period. The traditional single period

inventory problem also assumes that if any inventory remains at the end of the

period, the excess inventory is sold by a discount or disposed off simply; on the

other hand, if market demand exceeds the inventory level, some profit is lost. These

assumptions are proper in most cases, such as in fashing, sporting and service

industries. As a result, after been introduced by Hadley and Whitin,7 a lot of

extensions to single period inventory problem have been developed, such as Bassok

et al.,1 Ehrhardt,4 Fu et al.,5 Lau et al.,10 Sana,20 etc.

At first, the non-deterministic demand of single period inventory problem was

regarded as a random variable. So, the above research work employed probability

to deal with the non-deterministic demand. In 1996, Petrović et al.18 used fuzzy

set to describe the demand, which opened the door of introducing fuzzy theory into

single period inventory problem. Some extension fuzzy models were investigated by

Dutta et al.,3 Ishill et al.,8 Ji et al.,9 Li et al.,11 etc.

With the development of theories on non-deterministic phenomenon, it is found

that some non-deterministic phenomenon cannot be described by randomness or

fuzziness, such as the empirical estimate of demand in a future period. In order

to describe this type of non-deterministic phenomenon, uncertainty theory was

proposed by Liu12 in 2007 and refined by Liu16 in 2010. In 2009, Qin and Kar19

introduced uncertainty theory into single period inventory problem, and they re-

garded the market demand as an uncertain variable. In their paper, they derived

the optimal order quantity which maximizes the expected profit.

However, Qin and Kar’s model is a simple one with neither a setup cost nor an

initial stock. In real life, either the setup cost or initial stock has to be taken into

account. Then, the inventory policy must be changed correspondingly. This paper

expands Qin and Kar’s model to a more complex one, which concerns with an initial

stock and a setup cost. Still, the market demand in this paper is regarded as an

uncertain variable. The main contribution of this paper is to derive the optimal

policy of single period inventory problem with an initial stock and a setup cost,

which is of (s, S) type.

The rest of the paper is organized as follows. In Sec. 2, uncertainty theory

is introduced in several paragraphs, and some basic concepts and properties of

uncertainty theory are presented. In Sec. 3, single period inventory problem with

a setup cost and an initial stock level will be described in detail. In Sec. 4, (s, S)

policy is derived as the optimal inventory policy for single period inventory problem

described in Sec. 3. Section 5 concludes this paper with a brief summary.

2. Preliminary of Uncertainty Theory

In the past, when constructing mathematical models, the empirical or subjective

estimation of non-deterministic information, such as “about 100 kg”, “approxi-

mately 39◦C”, “big size” and “young”, is described by random variable or fuzzy
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variable. However, a lot of surveys showed that it’s not suitable. For example, we

say “the distance between Beijing and Shanghai is about 1300 km”. Obviously,

“about 1300 km” is not a random variable, since it is a constant which we do not

know exactly. Can it be described by fuzzy variable? The answer is no. If we em-

ploy fuzzy variable to describe the concept of “about 1300 km”, then there exists

a membership function, such as a triangular one (1200, 1300, 1400). Based on this

membership function, possibility theory will conclude: (i) the distance between Bei-

jing and Shanghai is “exactly 1300 km” with belief degree 1, and (ii) the distance

between Beijing and Shanghai is “not 1300 km” with belief degree 1. It is a paradox.

In uncertainty theory, this paradox will not happen.

Coming from the judgement of manager, the market demand of next business

period is also a non-deterministic information like “about 1300 km”. In order to suit-

ably deal with these non-deterministic information, introducing uncertainty theory

to describe market demand is necessary.

Founded in 2007, uncertainty theory is a new branch of mathematics. However,

theory and practice have shown that uncertainty theory is an efficient tool to deal

with some non-deterministic information, such as expert data and subjective esti-

mate, which appears in many optimization problems. In theoretical aspect, in 2008,

Liu13 first introduced uncertain process, a sequence of uncertain variables indexed

by time or space. Later, uncertain calculus was proposed by Liu15 in 2009, and

Chen and Liu2 proved the existence and uniqueness theorem for uncertain differen-

tial equation. Nearly at the same time, uncertain set theory was proposed by Liu17

in 2010 as a generalization of uncertainty theory to the domain of uncertain sets. In

practical aspect, Liu14 built the framework of uncertain programming, which was

soon applied to machine scheduling problem, vehicle routing problem and project

scheduling problem. Through the work of Liu17 and Gao et al.,6 uncertain infer-

ence is developed under uncertain set theory. In 2010, Liu16 started the research

of uncertain statistics, which gives an empirical uncertainty distribution from ex-

pert’s experimental data. Meanwhile, Zhu21 studied uncertain optimal control, and

applied it into portfolio selection model. In short, uncertainty theory is researched

and used more and more.

In this section, we introduce some foundational concepts and property of uncer-

tainty theory, which will be used throughout this paper.

Let Γ be a nonempty set, and L a σ-algebra over Γ. Each element Λ ∈ L

is assigned a number M{Λ} ∈ [0, 1]. In order to ensure that the number M{Λ}

has certain mathematical properties, Liu12,16 presented the four axioms: normality,

self-duality, countable subadditivity, and product measure axiom. If satisfying these

four axioms, the set function M{Λ} is called an uncertain measure.

Definition 1. (Liu12) Let Γ be a nonempty set, L a σ-algebra over Γ, and M an

uncertain measure. Then the triplet (Γ,L,M) is called an uncertainty space.
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Definition 2. (Liu12) An uncertain variable is a measurable function ξ from an

uncertainty space (Γ,L,M) to the set of real numbers, i.e., for any Borel set B of

real numbers, the set

{ξ ∈ B} = {γ ∈ Γ | ξ(γ) ∈ B}

is an event.

The uncertainty distribution of an uncertain variable ξ is defined by Φ(x) =

M{ξ ≤ x} for any real number x. For example, the zigzag uncertain variable ξ ∼

Z(a, b, c) has an uncertainty distribution

Φ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if x ≤ a

(x− a)/2(b− a), if a ≤ x ≤ b

(x+ c− 2b)/2(c− b), if b ≤ x ≤ c

1, if x ≥ c .

Definition 3. (Liu16) An uncertainty distribution Φ is said to be regular if its

inverse function Φ−1(α) exists and is unique for each α ∈ (0, 1).

Obviously, zigzag uncertain variable has a regular uncertainty distribution. If Φ

is regular, uncertainty distribution Φ is continuous and strictly increasing at each

point x with 0 < Φ(x) < 1. We usually assume that all uncertainty distribution in

practical application is regular. Otherwise, a small perturbation can be imposed to

obtain a regular one.

Definition 4. (Liu12) Let ξ be an uncertain variable. Then the expected value of

ξ is defined by

E[ξ] =

∫ +∞

0

M{ξ ≥ r}dr −

∫ 0

−∞

M{ξ ≤ r}dr

provided that at least one of the two integrals is finite.

Example 1: The expected value of zigzag uncertain variable ξ ∼ Z(a, b, c) is

E[ξ] = (a+ 2b+ c)/4.

3. Problem Description

Generally, there are two equivalent approaches to follow when constructing the

objective function for single period inventory problem. One is to maximize the

expected value of total profit during the period; another is to minimize the expected

value of cost. In this paper, we follow the first one. The notation and assumptions

are listed as below.
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3.1. Notation

ξ quantity demand, which is an uncertain variable;

y inventory level, which is a decision variable;

x initial stock;

K setup cost;

c purchasing or production cost of per unit;

h salvage value of per unit;

p selling price of per unit;

r(ξ, y) the revenue for demand ξ and inventory y;

R(y) the expected revenue for inventory level y, i.e., R(y) = E[r(ξ, y)];

f(ξ, x) the profit for demand ξ and initial stock x;

F (x) the expected profit for initial stock x, i.e., F (x) = E[f(ξ, x)].

3.2. Assumptions

(1) K, c, h and p are constant and independent of inventory policy and market

demand;

(2) Shortages are permitted, and there is no shortage cost other than loss in

revenue;

(3) The salvage value h is positive, and p > c > h > 0;

(4) There is no budget constraint.

3.3. Mathematical formulation

It is assumed that the initial stock is x ≥ 0, the setup cost is K > 0, and no item

will be ordered during the period.

Because the setup cost is positive, any order will lead to a positive cost K.

This means that ordering nothing may yield the maximum expected profit in some

situation.

According to the given notation and assumptions, if order nothing, the revenue

during the period is

r(ξ, y) = r(ξ, x) =

{
px, if x ≤ ξ

pξ + h(x− ξ), if x ≥ ξ .

Ordering nothing means no cost happens, then the total profit is just the revenue,

that is

f(ξ, x) =

{
px, if order nothing and x ≤ ξ

pξ + h(x− ξ), if order nothing and x ≥ ξ .

If order up to y > x, the revenue during the period is

r(ξ, y) =

{
py, if y ≤ ξ

pξ + h(y − ξ), if y ≥ ξ .
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Abstracting the cost (c(y − x) +K) from revenue, we obtain the total profit

f(ξ, x) = r(ξ, y)− c(y − x) −K =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
py − c(y − x) −K,

if order up to y and y ≤ ξ

pξ + h(y − ξ)− c(y − x)−K,

if order up to y and y ≥ ξ .

Obviously, r(ξ, y) and f(ξ, x) are both uncertain variables. Taking the expected

value of r(ξ, y) and f(ξ, x), we get

F (x) = E[f(ξ, x)] =

{
R(x), if order nothing

R(y)− c(y − x)−K, if order up to y,

where R(t) = E[r(ξ, t)]. Let Φ(t) be the uncertainty distribution of ξ, which is

regular. Qin and Kar19 proved

R(y) = E[r(ξ, y)] = py − (p− h)

∫ y

0

Φ(r)dr .

Our objective is to seek optimal inventory policy, which maximizes the expected

profit, that is

max
y>x

{
R(y)− c(y − x)−K

}
∨R(x) .

The following section will derive the optimal policy for this model, which is a

special case of the (s, S) type.

4. The Optimal Inventory Policy

In order to find the maximum of the objective function, it is better to investigate

the extremal property of function (R(t)−ct) first. Taking the derivative and setting

it equal to zero, we obtain

d(R(t)− ct)

dt
= p− (p− h)Φ(t)− c = 0 ,

or

Φ(t) =
p− c

p− h
. (4)

It’s assumed p > c > h, then p−c
p−h

∈ (0, 1). Since uncertainty distribution Φ is

regular, there exists t satisfying expression (4). What is more, Φ(t) is an strictly

increasing function on �. Then, there is only one root satisfying expression (4),

denoted as t = S. It is easy to verify that (R(t)− ct) is decreasing on [S,+∞) and

increasing on [0, S]. That is, when t = S, (R(t)− ct) reaches its maximum.

Define s as the smaller value of t satisfying R(t) − ct = R(S) − cS −K. Since

K > 0, we have s 	= S. See Fig. 1.

We will derive the optimal policy with the help of Figure 1. It breaks down into

three cases.
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Fig. 1. Graph of (R(t) − ct).

Case 1. Assume x > S. For any given y ≥ x, obviously

R(x)− cx ≥ R(y)− cy > R(y)− cy −K .

Hence, R(x) > R(y)− c(y − x) −K, where the right-hand side of the inequality is

the expected total profit if one orders up to y, and the left-hand side is the expected

total profit if one orders nothing. This indicates that if x > S, order nothing.

Case 2. Assume s ≤ x ≤ S. For any given y ≥ x, obviously,

R(x)− cx ≥ R(S)− cS −K ≥ R(y)− cy −K .

Again, we get R(x) ≥ R(y)− c(y − x)−K, which still indicates that if s ≤ x ≤ S,

order nothing.

Case 3. Assume x < s. From Fig. 1, we obtain

max
y>x

{
R(y)− cy −K

}
= R(S)− cS −K > R(x)− cx ,

Hence, R(S)− c(S − x) −K > R(x), that is, if x < s, order up to S.

This leads to an optimal policy of (s, S) type. Up to now, we can summarize:

Theorem 1. The optimal policy for uncertain single period inventory problem with

an initial stock x and a setup cost K is{
if x < s, then order up to S

if x ≥ s, than order nothing,

where the value of S satisfying Φ(S) = p−c
p−h

, and s is the smallest value of t satisfying

R(t)− ct = R(S)− cS −K.
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Example 2: Assume ξ is a zigzag uncertain variable, i.e., ξ ∼ Z(9, 10, 12), K =

40, p = 100, c = 80 and h = 50. Note that S must satisfy

Φ(S) =
p− c

p− h
=

100− 80

100− 50
= 0.4 ,

where Φ(t) is the uncertainty distribution of ξ ∼ Z(9, 10, 12). We can obtain the

unique solution: S = 9.8.

Because s < S < b = 10, s can be obtained from

100s− (100− 50)

∫ s

0

Φ(r)dr − 80s = 100S − (100− 50)

∫ S

0

Φ(r)dr − 80S − 40 ,

where ∫ s

0

Φ(r)dr =

∫ s

0

r − 9

2
dr =

s2 − 18s

4
,

∫ S

0

Φ(r)dr =

∫ S

0

r − 9

2
dr =

S2 − 18S

4
= −20.08 .

Then, s = 2.84. The optimal inventory policy is: if the initial stock level x ≥ 2.84,

order nothing; if the initial stock x < 2.84, order up to 9.8. �
If K = 0, the above single period inventory problem degenerates to one with

only an initial stock x. Assume the uncertain demand ξ has uncertainty distribution

Φ(t). The objective function can be expressed as

max
y>x

{
R(y)− c(y − x)

}
∨R(x),

where

R(t) = pt− (p− h)

∫ t

0

Φ(r)dr, ∀t > 0 .

For this problem, the optimal ordering policy is{
if x < S, then order up to S

if x ≥ S, then order nothing,

where the value of S satisfying Φ(S) = p−c

p−h
.

5. Conclusion

Uncertainty theory provides a new approach to describe some non-deterministic

information, such as empirical and subjective estimation. This paper employed

uncertainty theory to model single period inventory problem with an initial stock

and a setup cost, where the market demand was regarded as an uncertain variable.

It showed that the optimal policy for the uncertain single period inventory problem

with an initial stock and a setup cost is of the (s, S) type. As a degeneration model,

the optimal inventory policy for single period inventory problem with only an initial

stock is also given in this paper.

This paper just concerned with single period inventory problem with single

product. In fact, it can be extended to the problem with multiple products, which

is our next research point.
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Abstract Traditional reliability metrics are based on probability measures. How-
ever, in engineering practices, failure data are often so scarce that traditional metrics
cannot be obtained. Furthermore, in many applications, premises of applying these
metrics are violated frequently. Thus, this paper will give some new reliability metrics
which can evaluate products’ reliability with few failure data. Firstly, the new met-
rics are defined based on uncertainty theory and then, numerical evaluation methods
for them are presented. Furthermore, a numerical algorithm based on the fault tree is
developed in order to evaluate systems’ reliability in the context of defined metrics.
Finally, the proposed metrics and evaluation methods are illustrated with some case
studies.

Keywords Uncertainty theory · Reliability · Fault tree

1 Introduction

Reliability is an important property of products, defined as the ability that a com-
ponent or system will perform a required function for a given period of time under
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stated operating conditions (Ebeling 2010). Reliability metrics are defined to measure
products’ reliability and the process to obtain them is regarded as reliability evalua-
tion. Traditional reliability metrics are defined on the basis of probability theory and
the evaluation of them is based on statistical inferences of failure data (Meeker and
Escobar 1998).

Though traditional reliability metrics have achieved great success, there are scenar-
ios where they do not function well. Cai et al. (1991) summarized that three premises
must be satisfied so that probability measures can make sense: 1. Precisely defined
events; 2. Probabilistic repetitiveness in the collected data; and 3. Large sample size.
However, the three premises are widely violated in numerous engineering practices.
Moreover, since products’ reliability continues to grow, it is often impossible to get
enough failure data under restricted time and expense constraints (Meeker and Hamada
1995). Thus, challenges for traditional reliability metrics are becoming more and more
severe. One way to cope with these challeges is to conduct accelerated or degradation
testing for pseudo life data (Nelson 1990). Many products, however, do not fail even
under accelerated conditions. Reliability evaluation of such highly reliable products
requires new methods and metrics.

One possible solution might be the comprehensive evaluation. There are numerous
reliability tasks in a product’s life cycle, such as Design for Reliability, FMECA, Sim-
ulation Tests, etc. In fact, it is these tasks that decide the reliability of a product. If they
are performed effectively, high reliability can be believed even without information
from life tests. In the comprehensive evaluation, the effects of these tasks are assessed
by domain experts and the reliability evaluation is conducted accordingly. However,
experts’ judgments will lead to human uncertainty and under these situations, proba-
bility theory might yield counterintuitive results (Liu 2012). Thus, probability-based
reliability metrics are inappropriate for the comprehensive evaluation. Uncertainty
theory proposed by Liu (2007) and refined by Liu (2011) is considered to be a reason-
able complementation of probability theory under these settings. Therefore, this paper
will develop some new reliability metrics based on uncertainty theory and discuss how
to apply them to evaluate the reliability of highly reliable systems.

Uncertainty theory is a branch of axiomatic mathematics dealing with human uncer-
tainty. Since inaugurated by Liu (2007), it has been widely used by many scholars in
various areas to model human uncertainty (Chen and Liu 2010; Tan and Tang 2006),
etc.. Its applications in reliability were started by Liu (2010), in which reliability index
was defined as a measure of systems’ reliability and some simple system reliability
models were discussed, such as series and parallel models. Wang (2010) introduced
Liu’s definition of reliability index into structural reliability analysis.

In this paper, previous work is extended to cope with challenges in reliability eval-
uation of highly reliable systems. The rest of the paper is organized as follows: Sect. 2
introduces some preliminaries on uncertainty theory. In Sect. 3, the needs for reliability
metrics based on uncertainty theory are discussed. Section 4 gives the definitions as
well as numerical evaluation methods for the proposed metrics. In Sect. 5, evaluation
of systems’ reliability based on the proposed metrics is discussed and a numerical
evaluation method based on fault trees is presented. Some examples are also given as
an illustration to the proposed method.
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2 Preliminaries

Uncertainty theory is a branch of axiomatic mathematics founded by Liu (2007) and
refined by Liu (2011). Let � be a nonempty set, and L a σ -algebra over �. Each
element � in L is called an event. An uncertain measure is a set function M from L

to [0, 1] satisfying the following axioms (Liu 2007):

Axiom 1 (Normality Axiom) M{�} = 1 for the univeral set �.

Axiom 2 (Duality Axiom) M{�} + M{�c} = 1 for any event �.

Axiom 3 (Subadditivity Axiom) For every countable sequence of events �1,�2, . . . ,

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i }.

The triplet (�,L,M) is called an uncertainty space. A product uncertain measure
was defined by Liu (2009) in order to obtain an uncertain measure of a compound
event, thus producing the fourth axiom of uncertainty theory:

Axiom 4 (Product Axiom) Let (�k,Lk,Mk) be uncertainty spaces for k = 1, 2, . . .

The product uncertain measure M is an uncertain measure satisfying

M

{ ∞∏
k=1

�k

}
=

∞∨
k=1

M{�k}

where �k are arbitrarily chosen events from Lk for k = 1, 2, . . ., respectively.

An uncertain variable (Liu 2007) is a measurable function ξ from an uncertainty
space (�,L,M) to the set of real numbers, i.e., for any Borel set B of real numbers,
the set {ξ ∈ B} = {γ ∈ �|ξ(γ ) ∈ B} is an event.

The uncertain variables ξ1, ξ2, . . . , ξm are said to be independent (Liu 2009) if

M

{
m⋂

i=1

(ξi ∈ Bi )

}
=

m∨
i=1

M{ξi ∈ Bi }

for any Borel sets B1, B2, . . . , Bm of real numbers.
In practice, an uncertain variable is described by the uncertainty distribution, defined

by Liu (2007) as �(x) = M{ξ ≤ x},∀x ∈ 
.
An uncertainty distribution is said to be regular (Liu 2011) if its inverse function

�−1 exists and is unique for each α ∈ (0, 1).
The sufficient and necessary conditions that a function is an uncertainty distribution

are proved by Peng and Iwamura (2010): A function � : 
 → [0, 1] is an uncertainty
distribution if and only if it is a monotone increasing function except �(x) ≡ 0 and
�(x) ≡ 1.
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The expected value of an uncertain variable ξ is defined by Liu (2007) as an average
value of the uncertain variable in the sense of uncertain measure, i.e.,

E[ξ ] =
∞∫

0

(1 − �(x)) dx −
0∫

−∞
�(x)dx

provided that at least one of the two integrals is finite. Liu (2011) proved if the uncer-
tainty distribution � was regular, then the expected value can be obtained from the
inverse uncertainty distribution �−1 via

E[ξ ] =
1∫

0

�−1(α)dα. (1)

The variance of an uncertain variable ξ is defined by Liu (2007) as an indication
of an uncertain variable’s degree of spread. Let ξ be an uncertain variable with finite
expected value e. Then the variance of ξ is V [ξ ] = E[(ξ − e)2]. In order to obtain
variance from uncertainty distribution, Liu (2011) stipulated

V [ξ ] =
+∞∫
0

(
1 − �(e + √

x) + �(e − √
x)
)

dx

= 2

+∞∫
0

x (1 − �(e + x) + �(e − x)) dx .

(2)

Liu (2011) developed operation laws for uncertain variables so that the distribution
of functions of uncertain variables can be achieved. Let ξ1, ξ2, . . . , ξn be independent
uncertain variables with regular uncertainty distributions �1,�2, . . . , �n , respec-
tively. If f (x1, x2, . . . , xn) is strictly increasing with respect to x1, x2, . . . , xn , then
ξ = f (ξ1, ξ2, . . . , ξn) is an uncertain variable with inverse uncertainty distribution


−1(α) = f
(
�−1

1 (α),�−1
2 (α), . . . , �−1

n (α)
)

. (3)

3 Needs for new reliability metrics

As stated before, reliability evaluation of highly reliable products is a challenge for
reliability engineers. Consider a product whose life expectancy is 11,000 h. Such high
reliability makes it impossible to obtain failure data even under accelerated conditions.
Thus, evaluation methods based on failure data are not applicable for these products.

On the other hand, there is a lot of information about products’ reliability other than
failure data. For example, many reliability tasks are conducted in products’ life cycle.
If these tasks are performed effectively, high reliability can be believed even without
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conducting life tests. The effects of these reliability tasks can be evaluated by domain
experts and a comprehensive evaluation of reliability can be conducted accordingly.

Results from the comprehensive evaluation reflect our belief degrees of the prod-
ucts’ reliability. However, as Liu asserts (Liu 2012), it is inappropriate to regard the
belief degree as probability. Let’s take a series system comprising of 30 components
as an example.

Suppose all components in the system have the same life distributions

N(11000, 9502)(in hours)

and are independent from each other. The reliability of the system at 8,000 h can be
easily obtained, which is,

Rs =
(

1 − �

(
8000 − 11000

950

))30

= 0.9764. (4)

However, in reality, the real distribution is unknown to us and has to be estimated
by domain experts. Since human beings usually overweight unlikely events (Tversky
and Kahneman 1986), the estimated distribution might have larger variance the real
one. Assume that the estimated life distribution is

N(11000, 28502) (in hours).

Then the estimated reliability of the system at 8,000 h will be

Rs =
(

1 − �

(
8000 − 11000

2850

))30

= 0.0087. (5)

Results in Eqs. (4) and (5) are at opposite poles. This fact demonstrates that sticking
to probability-based metrics in a comprehensive reliability evaluation might lead to
an unacceptable result. Thus, this paper develops a set of new metrics and discusses
the evaluation of system’s reliability based on them.

4 The new reliability metrics

4.1 Definitions

Definition 1 (Reliability index) (Liu 2010) Assume a system contains uncertain vari-
ables ξ1, ξ1, . . . , ξn , and there is a function R such that the system is working if and
only if R(ξ1, ξ1, . . . , ξn) ≥ 0. Then the reliability index is

Reliabili t y = M{R(ξ1, ξ1, . . . , ξn) ≥ 0}. (6)

Remark 1 To avoid confusions with probability-based reliability index, the reliability
index in Definition 1 is regarded as Belief Reliability (RB) in this paper. Often life is
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assumed to be an uncertain variable T with uncertainty distribution �(t), so Eq. (6)
becomes

RB(t) = M{T > t} = 1 − M{T ≤ t} = 1 − �(t). (7)

Remark 2 Equation (7) indicates that belief reliability is a time-varying function (often
decreasing). Thus, it is regarded as belief reliability function and the processes to obtain
this function are called time-dependent analyses. In some applications, the focus will
be the value of RB(t) at a given period t = t0. These applications are regarded as time-
static analyses. Both the time-static and time-dependent analyses will be discussed in
detail in Sect. 5.

Definition 2 (Belief Reliable Life, BL(α)) Assume that products’ life is an uncertain
variable T with belief reliability function RB(t) and uncertainty distribution �(t). Let
α be a real number from (0, 1). The belief reliable life BL(α) is

BL(α) = sup{t |RB(t) ≥ α}. (8)

Theorem 1 Let �(t) be a regular uncertainty distribution with inverse uncertainty
distribution �−1(α). Then

BL(α) = �−1(1 − α). (9)

Proof It can be easily proved since a regular uncertainty distribution �(t) is strictly
increasing at each point t with 0 < �(t) < 1. ��
Definition 3 (Mean Time to Failure, MT T FB) Assume products’ life is an uncertain
variable T with belief reliability function RB(t). The mean time to failure MT T FB

is defined by

MT T FB = E[T ] =
∞∫

0

RB(t)dt. (10)

Definition 4 (Variance of Life, V L B) Assume that products’ life is an uncertain var-
iable T and its mean time to failure is MT T FB . The variance of life V L B is defined
by

V L B = E[(T − MT T FB)2]. (11)

Comments So far the metrics, namely RB(t), BL(α), MT T FB and V L B , have
been defined. Based on uncertainty theory, these metrics are intended to characterize
reliability when few or none failure data can be achieved so that domain experts are
relied on to evaluate reliability.

Belief reliability RB(t) is a function over time and it reflects experts’ personal belief
degrees of products’ reliability. Belief reliable life BL(α) is the longest duration that a
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product can last with its RB greater than a given level α. Since it is in time scale, it has
more straightforward meaning than RB(t). Mean time to failure MT T FB and variance
of life V L B characterize the location and variation of life distribution, respectively.

It should be noted that since the life distribution is achieved by expert’s experimen-
tal data rather than actual failure data, the defined metrics might change their values
with the knowledge of experts and the information they get about products’ reliability.
Generally speaking, the more experienced experts are, and the more information they
can get about products’ reliability, the more accurate these metrics will be.

4.2 Numerical evaluation methods

In practice, it is often difficult to obtain the proposed metrics analytically and numer-
ical evaluation methods are needed. In this section, numerical methods are provided
for obtaining MT T FB and V L B from BL(α), respectively. Note that all uncertainty
distributions discussed in this section are supposed to be regular.

Theorem 2 (Numerical Evaluation of MT T FB) Let T be an uncertain variable with
regular uncertainty distribution �(t) and belief reliable life BL(α). Then

MT T FB =
1∫

0

BL(α)dα. (12)

Proof From Theorem 1, we have

1∫
0

BL(α)dα =
1∫

0

�−1(1 − α)dα =
1∫

0

�−1(α)dα = MT T FB .

��
Theorem 3 (Numerical Evaluation of V L B) Let T be an uncertain variable with
regular uncertainty distribution �(t) and belief reliable life BL(α). Then

V L B = 2

⎡⎣ RB (MT T FB )∫
0

(MT T FB − BL(α))αdBL(α)

+
1∫

RB (MT T FB )

(BL(α) − MT T FB)(1 − α)dBL(α)

⎤⎥⎦ .

Proof The theorem can be proved from Eq. (2) by the method of variable transforma-
tion. ��

In practice, the integrals in the two theorems are often conducted numerically by
computers, which allow computationally flexible evaluations of MT T FB and V L B .
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5 Systems’ belief reliability

5.1 Time-static systems

A time-static system is a system whose reliability does not change over time and can
be viewed as a special case of a time-dependent system at a specified t = t0. Although
most real systems are time-dependent, time-static analyses can help us understand the
relationship between components’ failures and system’s failures.

The systems to be discussed are assumed to be binary-state. Therefore their cor-
responding time-static systems are Boolean systems. Liu (2010) had developed eval-
uation methods for Boolean systems through the structural function. In engineering
practices, structural functions are often obtained through fault trees and fault trees are
more familiar to engineers than structural functions. A typical fault tree is illustrated
in Fig. 1 and readers might refer to Ebeling (2010) for details on the fault tree. The
rest of this section will discuss quantitative fault tree analyses in the context of belief
reliability. Quantitative analyses of a fault tree involve two steps:

1. Enumerate all minimum cut sets;
2. Calculate the system’s reliability based on the minimum cut sets.

A cut set is a set of components whose failures interrupt all connections between
input and output ends and cause an entire system to fail. A minimal cut set is the
smallest combination of components which will cause the system’s failure if they all

Fig. 1 A typical fault tree
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Table 1 The implementation of
MOCUS

Step 1 Step 2 Step 3 Step 4

x1 x1 x1 x1

E1 E2, E3 x1, E3 x1, x3

x2, E3 x1, x4

x2, x3

x2, x4

fail. There are numerous algorithms for enumerating minimum cut sets from a fault
tree. Among them, MOCUS by Fussell and Vesely (1972) is an efficient and widely
used one and will be applied in this paper. An implementation of MOCUS to the fault
tree in Fig. 1 is demonstrated blow.

– Construct an empty table.
– List all output events of an AND gate in a single row of the table, while list each

of the output events in individual rows for an OR gate, as shown in Table 1. Then
the last column of Table 1 lists all cut sets.

– Discard the cut sets which include other cut sets.

Since both {x1, x3} and {x1, x4} include {x1}, the minimum cut sets are

{x1}, {x2, x3}, {x2, x4}.

Once the minimum cut sets are decided, the belief reliability of the system can be
obtained from them, as stated in Theorem 5.

Theorem 4 (Liu 2011) Assume that ξ1, ξ2, . . . , ξn are independent Boolean uncer-
tain variables, i.e., ξi = 1 wi th uncertainty measure ai for i = 1, 2, . . . , n. Then
the minimum ξ = ξ1 ∧ ξ2 ∧ · · · ∧ ξn is a Boolean uncertain variable such that

M{ξ = 1} = a1 ∧ a2 ∧ · · · ∧ an .

The maximum η = ξ1 ∨ ξ2 ∨ · · · ∨ ξn is a Boolean uncertain variable such that

M{η = 1} = a1 ∨ a2 ∨ · · · ∨ an .

Theorem 5 Assume that a system comprises of n components and each component
is represented by an uncertain Boolean variable ξi such that M{ξi = 1} = Ri , where
Ri , i = 1, 2, . . . , n are the reliabilities of the components. Suppose the system has m
minimum cut sets C1, C2, . . . , Cm. If the failures of the components are independent
from each other, the system’s reliability will be

RS =
m∧

i=1

⎧⎨⎩∨
j∈Ci

R j

⎫⎬⎭ . (13)



Z. Zeng et al.

Proof Let a Boolean uncertain variable ξ denote the state of the system (The system
is working when ξ = 1). Since the system has m minimum cut sets C1, C2, . . . , Cm ,

ξ =
m∧

i=1

ηi

where ηi = ∨
j∈Ci

ξ j , i = 1, 2, . . . , m. From Theorem 4,

M{ηi = 1} =
∨
j∈Ci

M{ξ j = 1} =
∨
j∈Ci

R j .

Thus,

RS = M{ξ = 1} =
m∧

i=1

M{ηi = 1} =
m∧

i=1

⎧⎨⎩∨
j∈Ci

R j

⎫⎬⎭ .

��
Algorithm 1 is a combination of MOCUS and Theorem 5, which tells how to con-

duct belief reliability evaluation for a time-static fault tree.
Algorithm 1 (Belief Reliability Evaluation for a Time-Static Fault Tree):

Step 1: Enumerate all minimum cut sets:
Loop from Top to Bottom:
if Gate == AND

Increase the elements in each cut set;
if Gate == OR

Increase the number of the cut sets.
Discard the cut sets which include other cut sets.

Step 2: Obtain system reliability from Theorem 5.
End.

Example 1 Consider a time-static system whose fault tree is given in Fig. 1. In the
fault tree, top event T denotes the system’s failure and x1, x2, x3, x4 denote the failures
of the four components, respectively. Reliabilities of the components are

R1 = 0.85, R2 = 0.92, R3 = 0.95, R4 = 0.90.

Algorithm 1 is applied to evaluate the system’s reliability.

Step 1: The minimum cut sets are

{x1}, {x2, x3}, {x2, x4}.
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Table 2 Life distributions of
the components

Component Life distribution

x1 L(450, 550)

x2 N(500, 10)

x3 Z(450, 500, 550)

x4 N(500, 20)

Step 2: From Theorem 5,

RS = min {R1, max{R2, R3}, max{R2, R4}} = 0.85.

5.2 Time-dependent systems

In this section, results obtained in Sect. 5.1 will be used to evaluate a time-dependent
system.

Theorem 6 (Evaluation of Time-Dependent Systems) Let S be a time-dependent sys-
tem whose time-static fault tree T has m minimum cut sets C1, C2, . . . , Cm. Assume
the system comprises of n components X1, X2, . . . , Xn and their belief reliable life
functions are BL1(α), BL2(α), . . . , BLn(α), 0 < α < 1, respectively. Then the
system’s belief reliable life will be

BL S(α) =
m∧

i=1

⎧⎨⎩∨
j∈Ci

BL j (α)

⎫⎬⎭ . (14)

Proof Let T denote the system’s life and ti denote the life of component Xi . Since T
can be obtained from the lives of elements in each minimum cut set by

T =
m∧

i=1

⎧⎨⎩∨
j∈Ci

t j

⎫⎬⎭
and f (t1, t2, . . . , tn) = ∧m

i=1

{∨
j∈Ci

t j

}
is a strictly increasing function with respect

to t1, t2, . . . , tn , according to the operation law,

�−1
T (α) =

m∧
i=1

⎧⎨⎩∨
j∈Ci

�−1
j (α)

⎫⎬⎭ .

Thus Eq. (14) follows immediately from Theorem 1. ��

Example 2 Consider a time-dependent system whose time-static fault tree is shown
in Fig. 1. Life distributions of the components are listed in Table 2. Decide the belief
reliability function of the system and the belief reliable life for α = 0.9.
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Fig. 2 Evaluation results
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System Reliability

The three minimum cut sets are {x1}, {x2, x3}, and {x2, x4}. So the system’s belief
reliable life BL S(α) is obtained from Eq. (14) and the belief reliability function of the
system is demonstrated in Fig. 2. For α = 0.9, BL(α) = 460 (h). Mean time to failure
MT T FB and variance of life V L B are achieved from Theorems 2 and 3, respectively.

MT T FB = 494.97 (h), V L B = 576.82 (h2).

6 Conclusion

This paper focused on the application of uncertainty theory in reliability evaluation of
systems with high reliability and long life.

1. Some new reliability metrics based on uncertainty theory were defined to charac-
terize systems’ reliability from different aspects.

2. Numerical methods for obtaining the defined metrics MT T FB and V L B from
belief reliable life BL(α) were proposed.

3. Fault tree analysis methods in the context of belief reliability were developed for
numerical evaluation of complex systems.
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